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PREFAC E

This document describes the mathematical requirements for a genertil

earth-orbital mission analysis system tentatively called the Gcddard

Mission Analysis System (GMAS). A related document is the G_S Functional

Kequirements Document, released I0 October 1974, which summarized the top-

level requirements on the system. Previous to that, various documents

reviewing mission analysis software and techniques were issued under this

effort.
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I. INTRODUCTIONANDSUMMARY

The GoddardMission Analysis System (GMAS)is to be a coordinated

system of computer software that can be used for the mission analysis of

general earth-orbltal missions. The word "system" implies a set of com-

patible and complementary elements (data base, utility routine library,

program modules, executive programs, interactive graphfc_ equipment and

usage, etc.) whose independent Danctions and mutual interfaces are care-

fully designed to produce an operation which generates the required data

as reliably, efficiently, and easily as possible.

GMAS is to be capable of handllng all three phases of mission

analyses: pre-flight, In-fllght, and post-flight. The basic executive

programs will be similar for all phases but different modules and models

will be available for each phase. The in-flight capability wlll of

course require real time responsiveness necessitating special mathemat-

ical techniques as well as the effective use of interactive graphics and

displays.

GMAS will be capable of operating in several mission analysis modes.

It will analyze launch opportunity assessment, orbit selection, maneuver

targeting and analysis, trajectory propagation, force model sensitivity.

mission profile generation, parametric scans, linear error analysis and

Monte Carlo error analysis. It will be capable of performing these

studies at the levels of depth required by the mission phases discussed

above.

GMAS Is to be applicable to all earth-orbital missieils eventually.

Initial development however is to be directed toward four classes of

earth-orbital missions: synchronous missions (e.g., CTS, SMS), sun-

synchronous missions (e.g., ERTS), drag missions (e.g., AE), and shuttle

applications missions. Techniques and software applicable to the first

three mission classes currently exist at GSFC. However, these elements

are somewhat fragmented and overlapping; the goal of GM/.S Is to identify

the elements conm_on to all three classes and try to coordinate them in an

effective general system. The last class is intended to direct attention

to identifying the new mission analysis problems associated with the pro-

posed shuttle era.

There are many attractive features of a general system like GMAS if

it can be effectively implemented. A modular skeletal structure permits

I-I



• the basic programs to be easily extended to new problems, techniques and

models as they are identified. The commonality of the basic structures

with respect to the mission phases results in ease in transferring from

the pre-flight to the in-fllght to the post-flight phases of mission

analysis. Since the basic structures are used for several mission classes

(i.e., synchronous, drag, etc.), program users can effectively move from

one mission type to another with a minimum of difficulty. Since many of

the routines are used by several modules or programs, improvments made to

these basic routines immediately improves all the programs that use them,

leading to a reduction in costs to maintain the software. Furthermore,

this constant use of the same routines and modules result_ in quick iden-

tification of programming errors and thus leads to a continual increase

in the reliability of the systems. These advantages can however only be

obtained if the system is carefully designed initially so that the time

and core requirements are held to a minimum and the program structures

are clearly defined.

The first document issued in this initial design effort was the

Functional Requirements Document (FRD) which provides a h_gh-level descrip-

tion of the functional requirements to be levied on GMAS. The FRD is cur-

rently undergoing revision after review by GSFC personnel. The continually

improved document should also improve the efficiency of _e actual p_ogram

construction when begun by having all the mathematical formulation down on

paper before beginning any of _e coding, thereby demonstrating such

things as the required data flow or multiple uses of _ingle modules.

This document, the Mathematical Specifications Document (MSD), is the

second in the series. Its function is to identify, organize and display

the mathematical models and techniques of GMAS in a single, self-contained

report. This will allow knowledgable personnel to review, critique and

improve the models and techniques o£ GMAS before beginning the expensive

and sometimes seemingly irreversible process of program coding and assembly.

It is also hoped that this document be of broader _se than simply in

GMAS development. It is reco_snended it be maintained as a sun_nary of cur-

rent mathematical techniques used in mission and operations analysis and

support. Then it could foster communication within the mission analysis

group by enabling the specialists in each area to see the techniques used

by their counterparts in othe_ disciplines and other projects. It could

I-2



also serve as an introductory guide to the mission analysis area for un-

familiar personnel such as new employees, non-mission analysis special-
ists or new contractors.

To accomplish these objectives the editors have tried to make this

document as flexible and complete as possible. Wehave tried to estab-

lish a format which allows growth as easily as possible. To improve this

we intend to change the numbering of pages, figures, tables and equations

to a section basis (e.g., Table 9.1-1, Equation 5.4-3) instead of on the

chapter basis (e.g., Table 9-1, Equation 5-24) currently used. This

would facilitate the required changes and extensions that we feel are

necessary to make this a useful document and not just a dust collector.

For completeness certain topics :hat have already been addressed in

detail in GSFC dr other contractor studies have been summarized or re-

produced in this report, hopefully always with proper credit given to the

original source. In the interest of devoting as much time and effort to

the technical analysis and evaluation, the contractor was instructed to

minimize the editoral, art and reproduction costs. Thus, where appropri-

ate, the original text, equations and artwork from these other sources

has been directly reproduced in this report.

The next release of this doc,mment from the contractor is due in

January 1975. This release will still be in draft iorm. Eventually GSFC

intends to publish this document formally through their own facilities.

Any comments or suggestions should be forwarded to the GSFC Technical

Monitors: Dr. C. E. Velez or Mr. C. R. Newman, Code 582, Goddard Space

Flight Center, or the MMC Program Manager: Dr. E. D. Vogt, Telephone:

(303) 794-5211, Ext: 5471.
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2. GMAS MISSION SET

Table 1 below defines the four classes of missions to be addressed

during this effort. The ordering of the classes is immaterial as the

four classes will be treated equally.

Inde__..__x Class

I Synchronous

2 Suo-Synchronous

3 Drag

4 Shuttle Applications

I

Specific Examples

SMS-A/B, ATS-F, CTS, IUE, SEOS

ERTS-I/B, SMM, HCMM

AE-D/E, SMM

TABLE 2-i. Applicable Mission Classes

2.1 Synchronous Missions

The first class covers synchronous missions where a critical

problem is the large apogee motor burn. It includes the Synchronous

Meteorological Satellite (SMS) Missions A and B. SMS-A was launched

17 May 1974 and SMS-B is scheduled for launch in October, 1974 (Delta

launches). Problems with SMS-A (with a six-sigma low apogee in the

transfer orbit) pointed up the needs for better apogee maneuver target-

ing and quick, convenient, parametric search techniques for contingency

situations in-fllght. The Applications Technology Satellite (ATS-F)

was launched (May, 1974) and placed into orbit by a Titan vehicle.

The Communications Technology Satellite (CTS) is a joint venture

between the U.S. and Canada to be launched in late 1975. GSFC is

responsible for getting the satellite on station and Cauada takes over

at that point. The International Ultraviolet Explorer (IUE) mission

2-1



to be launched in mid-1976 is unusual because it is both eccentric and

highly inclined to the equator. The Stationary Earth Observatory Satellite

is a geostationary equatorial orbiter with minimal north-south drift to

provide continuous U.S. coverage.

2.2 Sun-Synchronous Missions

The second class of missions includes the ERTS-type missions which

are repeating, sun-synchronous missions with orbital periods of slightly

less than two hours. The first Earth Resources Technology Satellite

(ERTS-I) is flying now and ERTS-B is scheduled for launch in early 1975.

Both are to have 18 day repeating ground tracks and the _argeting of

ERTS-B will probably involve some phasing constraints to get a net 9 day

pattern between the two spacecraft. The Heat Capacitance Mapping Mission,

now in prelimin_ry planning, is a sun-synchronous mission that is to

obtain near glob_l coverage in about eight days. The Solar Maximum

Mission (S.'_,) launched in 1978 has a sun synchronous orbit that is low

enough (about 500 km altitude) to also qualify it as a dcag mission.

2.3 Atmospheric Drag Missions

In addition to SMM, the drag missions of the third category include

the Atmospheric Explorer (AE) Missions D and E, launched in March and

September, 1975, respectively. These missions involve the gradual

lowering of perigee into the atmosphere by a sequence where perigee is

lowered for one orbit, ral'sed to the previous altitude while data is

processed and then if results are safe and predictable, relowered to

the new altitude. Some targeting is required in these missions to move

periapsis to a location where correlated tests with rockets may be

made.
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2.4 Shuttle Applications

The fourth class of missions is a somewhat special category as it

is intended to start identifying the mathematical mcdels and techniques

required for shuttle-era missions. Since GSFC will predominantly be in

the role of the shuttle-customer (andnot the shuttle-operator) its re-

quirements will largely be to transfer the GSFC satellite from or to orbit

where it may be serviced by the shuttle. Possibilities for more compli-

cated orbit phasing maneuvers thus arise. Also the requirement for re-

startable engines for many of these maneuvers may necessitate the use

of longer burn_ using lower thrust and perhaps vehlcle pitching during

the maneuver itself.
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1
SYSTEM STRUCTURE AND INTERFACES i

The basic software components of GMAS may be organized into a hierarchy as

follows:

Element

Routine

Module

Program

Subsystem

System

Description

The smallest unit of software.

A group of functionally related routines.

A collection of modules (and possibly routines) linked to

perform a major task.

A set of complementary and coordinated programs.

An integrated set of subsystems.

Under these definitions GMAS is a subsystem within the FDS overall system. The

detailed design of the system and subsystem structures and interfaces is normally

performed after detalilng the mathematical specifications of the system. However,

these specifications can most efficiently be developed in the context of some

structural definition; albeit preliminary. This section will briefly summarize the

tentative FDS/GMAS structure.

3.1 FDS Interfaces

The effective design of GMAS requires an understanding of its relation to

the other subsystems of the Flight Dynamics System (FDS). The FDS will consist

of three subsystems: the Goddard Trajectory Determination System (GTDS), the

Attitude Determination and Control System, and the Goddard M±sslon Analysis

System (GMAS).

The GTDS has the prime responsibility for the orbit determination function.

It processes telemetered tracking data to estimate the spacecraft orbit and as.,_o-

clated uncertainty. In the performance of this task it also includes ephemeris

generation (mainly high precision), data simulation, and orhlt comparison capa-

bilities. The principal interfaces between the GTDS and the GMAS are that GTDS

supplies GMAS with the estimated orbit, covariance, and state transition matrix,

wh_le CMAS 3upplles the GTDS with the nominal maneuver and predicted orbit.
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The Attitude Determination and Control System (ADCS) is responsible for the

real-time determination and control of the vehicle attitude. There is an active

interface between the _DCS and GMAS with GMAS supplying the ADCS with the desired

maneuver attitude, ADCS responding with a commanded and achieved attitude, and

GMAS determining the acceptability of that attitude.

The basic interface device between the three subsystemn will be a common

data base in which data required by the three elements will be stored.

3.2 GMAS Modules

A well-designed set of modules is the catalyst that turns a software library

into an effective, coordinated system. The GMAS modules provide the basis for

a general, flexible, and easily-extended system and allows the simple construction

of mission-peculiar software as it is identified. These modules may be divided

into two categories as follows:

GMAS Computational Modules

Trajectory Propagation

Optimization and Targeting Algorithms

Orbit Parameter Computation

Instantaneous Parameter Computation

GMAS ExecutiveModules

Parametric Scan-Control

Monte Carlo Analysis Control

Targeting/Optlmization Control

The computational modules include those software packages that perform general

mathematical computations that are required by several programs. The basic com-

putational module is the trajectory generator which is used by all the programs.

An equally important module for mission analysis is the targeting and optimization

module for maneuver :argeting and orbit selection. Other modules will include

the orbit parameter module which computes mission analysis parameters (e.g.
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shadowperiods) from orbital elements, and the instantaneous parameter module

which computes mission analysis parameters (e.g., elevation from a tracking station)

from the instantaneous state of the vehicle.

The second class of modules are the executive modules which control the data

flow and bookkeeping for specific types of studies. This cla_s includes three

similar modules controlling parametric scans, Monte Carlo analyses, and targeting

and optimization.

3.3 GMAS Programs

With a proper design of the computational and executive modules defined above,

it is a relatively easy job to assemble those modules with qupportlng (and some-

times mission-peculiar) routines to produce effective _S programs. The major

GMAS programs are briefly described below.

GMAS Programs

Trajectory P_opagation

Launch Opportunity Assessment

Mission Scen

Maneuver Targeting and Analysis

Mission Profile Generation

Linear Error Analysis

Monte Carlo Am_lysis

Trajectory Propagation Program: This program will contain the trajectory

propagation module and the control logic (initialization, input and output con-

trol, etc.) necessary to operate it. Trajectory propagation will be available

for a variety of force models, mathematical _ormulations, and numerical quadrature

schemes.

Launch Opportunity Assessment: This program will have the capability to

scan the launch perlod/launch window opportunities while evaluating a variety

of constraints such as shadowing, attitude (luring coast and maneuvers, orbital
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lifetime, etc.

Mission Scan Analysis: This program will be capable at evaluating a series

of orbits defined b 7 a variety of control parameters including impulsive maneuver

parameters, haunch profile parameters such as launch azimuth and coast time, and

orbital elements for broad orbit selection.

Maneuver Targeting and Analysis: This program will be similar to the pre-

vious program except _hat it operates in a targeting or optimization mode instead

of a scan mode. It will select the optimal maneuver or mission satisfying equality

or inequality constraints while optimizing or requested performance criteria.

Mission Profile Generation: This program will be responsible for the

detailed mission profile generation. It will be capable of operating in either

the single-case or scan mode, generally with the high- or medium-precision propa-

gation modules and with the instantaneous parameter computation module. Its

output will define predicted station passes, shadows, site overflies, etc.

Linear Error Analysis: This program will be capable of oerforming pre-

flight error analyses for both [racking and maneuvers. The trackin B analysis

will mirror models actually used in the GTDS in its analysis of the ability to

track the vehicles. The maneuver error analysis will identify the impact of

injection covariances and orbital maneuver execution errors on fuel budgets

and mission design margins.

Monte Carlo Analysis: This program will be composed of the Monte Carlo

control module, the selected trajectory propagator, and the desired parameter

computation modules. It will be responsible for flying a given mission sequence

repeatedly, sampling from input error models to simulate the realities of errors

on maneuvers.
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4. EXECUTIVE MODULES

The purpose of this contractual effort was to summarize the

mathematical specifications of the GMAS. However, in the develop-

ment of those specifications some consideration was given to several

modules performing key executive functions. The detailed definition

of the logic and structural design of these modules will be performed

in the subsequent design phase of GMAS. However, a toplevel view of

several of these modules is worthwhile to demonstrate how several of

the computational modules such as the trajectory propagators, the

maneuver targeting algorithms, and the mission analysis parameters

may be tied together by executive structures. The executive modules

discussed below include the following:

I. Parametric Scan Module

2. Monte Carlo Module

3. Targeting Module

4. Mission Synthesis Module

4.1 Parametric Scan Capability

A frequently-used technique in all phases of mission analysis

is the parametric scan. In parametric scans, certain parameters

(called control parameters) are varied in a systematic manner

(generally over a grid of values) and resulting parameters (called

performance parameters) are evaluated for the series of control

parameters. The control parameters are generally associated with

maneuvers and the performance parameters are generally mission

analysis parameters associated with the resulting orbits.

The parametric scan capability required for the GMAS is sum-

•marized in Table 4.1-1 on the following page. Generally four types

of parametric scans are needed: launch window analysis, launch orbit

selection, standard orbit selection, and maneuver targeting. These

studies are distinguished by the particular control and performance

parameters desired. In launch window analyses, the launch date and

launch time-of-day (or longitude of the ascending node) are system-

atically varied to determine launch periods having adequate daily
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launch windows with acceptable orbits. In launch orbit selection,

the launch date is held fixed while the standard launch parameters

are varied within reasonable limits to determine the range of

feasible (with respect to reasonable launch constraints) orbits.

In the direct orbit selection, no attempt is made to tie the orbit

selection process to launch; the control parameters are simply the

orbital elements (or equivalent parameters such ss perigee or apogee

altitude) varied to optimize the systems design or science return of

the mission. The fourth category of maneuver targeting is also

related to orbit selection as the maneuver controls are generally

selected to optimize the resulting orbit. Three types of maneuvers

control constraints are indicated in Table 4.1-1 corresponding to

unconstrained controls, and controls limited by fixed V magnitude

and fixed attitude. The performance parameters in all three cases

are identical however.

The logic flow for any of the scans is essentially identical.

The mscrologic is indicated in Figure 4.1-1. Whether a general

structure can or should be constructed or whether distinct programs

should be developed will be a subject for the system design phase.

Define (input)

controls k

initial values
=

increments ___U_Uo

increments _u

parameters k
--p

Increment

control

parameters

systemat-

ically

--->

Propagate

trsjector_

to event

time(s) if

necessary

Evaluate

computed

parameters

_(_) and/or

profiles

Print

and/or

store

case

data

A

Figure 4.1-1. Parametric Scan Macrologic
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4.2 Monte Carlo Capability

A second type of executive control required by the GS_Sis a

Monte Carlo capability. Monte Carlo analysis is an integral part

of maneuver analysis to determine the sensitivity of orbits and

their related parameters (e.g., shadowing, station coverage, orbit

correction requirements, etc.) to errors made during, the maneuver

itself.

The types of Monte Carlo analyses needed may be categorized

according to the error models used to describe the maneuver (See

Table 4.2-1). Certain maneuvers employ a covariance matrix for

the error model. Such is the usual case with the injection maneu-

ver from the parking orbit onto the transfer or target orbit. The

impulsive error model would generally be used in analyzing a maneu-

ver which takes place during a short increment of orbital true

anomaly such as an apogee maneuver or the transfer orbit for a

synchronous mission. The finite burn maneuver error model might

be required to model a fixed-pitching-rate maneuver used in inject-

ing from a parking orbit onto a synchronous mission transfer orbit.

if no injection covariance matrix were available for that maneuver.

Error Model

Covariance

Impulsive

Maneuver

"Finite Burn

Error Parameters

Covariance matrix (6x6) defining deviations in

post maneuver position and velocity

Error in impulsive LEV defined by:

proportionality error - k _,V
resolution error - s LV

pointing errors - _K and

Error in state following maneuver computed by

integrating sample burn defined by:
thrust - T

mass - m

time of initiation - t

duration of burn - _t

pointing angles during burn - _i _

Table 4.2-1. Monte Carlo Error Models
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Regardless of error models employed, the Monte Carlo analysis

proceeds similarly. The error model is sampled repeatedly to

generate post-maneuver states. These states are then propagated

forward evaluating desired performance variables (See Table 4.1-1).

After generating a statistically-reasona le number of samples, the

statistics of the resulting performance variables (iNcluding pro_

bability of success) are re-constructed. The macrologic is essen-

tially identical to that of the parametric scan (Figure 4.1-1)

except for the second computational block in which t_e systematic

incrementation of the control variables is replaced by the statis-

tical sampling of the desired error models. The mathematical

details of this sampling are discussed in Section 14.3.
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4.3 Targeting Capability

A third executive capability involves the targeting and opti-

mization of orbits and maneuvers. This capability is similar to

the previous two capabilities (parametric scan and Monte Carlo scan)

in that a series of different orbits are propagated, periodically

evaluating a user-defined set of mission analysis parameters. The

difference is that the sequence of orbits is determined to iteratlvely

improve a performance function instead of following a user-specifled

variable grid (parametric scan) or randomly generated error model

samples (Monte Carlo analysis).

The targeting module structure thus is identical to the structure

pictured in Figure 4.1-I with one major exception: the second block

is replaced by the targeting iteration algorithm. The mathematics of

this algorithm are described in detail in Chapter ll. The other pri-

mary computational modules include the trajectory propagators (described

in Chapter 6) and the mission analysis parameter computations (discussed

in Chapter 7).

As with the previous two executive capabilities, there are several

distinct studies for which a targeting capability would be desirable.

These essentially parallel the studies suuunarized in Table 4.1-I.

Referring to that table only the launch window study is probably

not amenable to targeting _nd optimization anslyPls.

The performance function and related constraints of such studies

are sufficiently complex and nonlinear to make an iteratlve targeting

algorithm less than effective. Also, the mission designer's subjective

evaluation is frequently required in the trades associated with launch

window studies. The other studies listed in Tabl_ 4.1-1 are all well-

suited to optimization analysis. In the categorization of parameters,

the "fixed parameters" would be held constant st the input values

during the optimization. The "varied parameters" would be the control
i

parameters solved for during the process. The "performance parameters"

would be combined and weighted to determine the performance function

which would then be minimized (or maximized) during the optimization

process.
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The preferable modeof implementation would be to develop the

targeting/optimization algorithm in a self-contained, modular package

that could be used easily in any of these applications. The executive

structure that manages the targeting algorithm, the propagator, and

the parameter computational modules would be quite similar for each

of these studies but may have certain peculiarities for each study.
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4.4 Trajectory Synthesis Module

The object of the mission analysis system is to eliminate the need

for a new round of programming with each new problem. The cost of such

uncoordinated softw,_re development in terms of analysis, coding, verifica-

tion, and documentation is entirely unacceptable. The alternative is to

develop a coordinated yet flexible system of executive and computational
modules which the user can access to solve his mission analysis problem

via a user oriented data deck. Such an approach not only reduces software

development costs but also guarantees uniformly high qua'lity analysis and

a stondard format for supplying data and reporting results.

Fundamental then to this "data-driven" mission analysis system is

a means to specify an arbitrary trajectory with a minimum of user supplied

data. Such a capability is essential to the targeting/optimization error

analysis, parametric scan, and profile generation executive programs. This

system-wide demand dictates the need for a computational module to synthe-

size a full range of earth-orbital trajectories from input data alone.

To be of substantial benefit to the user, such a trajectory synthe-

sizer must be able to function from precisely that data which characterize

the trajectory in the user's mind. In other words, the user must not be

required to have detailed knowledge of the trajectory to specify it to the

system. Typically, the mission analyst thinks of earth orbital missions

in segments or phases separated by well defined events. For instance, a

synchronous equatorial mission consists of the phases and triggering events

shown in Table 4-i. Notice that all of the triggering events are charac-

terized by a specific variable assuming a prescribed value. This triggering

variable is not necessarilv time. Hence the synthesizer cannot require the

use," to specify the start time of c_ich phase. The minimal input data struc-

ture for the trajectory synthesizer is built upon this event/phase conceptual

basis for specifying trajectories.

In order to build the trajectory as it goes, the synthesizer must

propagate the equations of motion numerically in time. Next all of the

simulation data must be input by phase. Data can be carried over from

one phase to the next but each phase must be supplied with all of the

essential information pertnining to environment, vehicle characteristics,
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initial state conditions, control variables, and propagationtechniques so

that each trajecto_Z phase can be constructed fro,m its specified triggering

event to the corresponding event for the succeeding phase.

NO.

I.

2.

.

.

Do

•

.

.

1

TRIGGERING EVENT

DESCRIPTION

ascent burnout

first transfer

burn ignition

first transfer

burn termination

second transfer

burn ignition

second transfer

burn termination

phasing burn

ignition

phasing burn

termination

synchronization

burn ignition

synchronization
burn termination

VARIABLE

time

latitude

(o°)

weight of

propellant

latitude

(o °)

weight of

propellant

time

time

longitude

time

PHASE DESCRIPTION

parking orbit coast

transfer ellipse injection

transfer ellipse coast

apogee motor circularization

maneuver

post circularization tracking

coast

phasing maneuver

phasing coast

synchronization manpower

coast in final synchronized

orbit

Table 4.4-[. Trajectory Characterization by Phases and Triggering

Events for a Synchronous Equatorial Mission

The actual phase specification adheres closely to the user's event/

phase concept of trajectory structure. The simulations are given the same

programmable quality of actual trajectories, that is, subsequent phases can

be adapted to accommodate the outcome of prior phases in order to acheive

desired mission objectives. The ord:r of occurrence o_ each phase is deter-

mined by its triggering event which is turn defined as the assumption of a
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specified valu_ by thu triggering variable. In order to treat precedence

L'L'I_L_oIIS at.ottg Lhe ph;_s_'s, _'_+ch t °" ','''"[ l_,+,u[ Ill+, _]V_'|l_Itttt_ |),+aSS igncd a

sequence number by the user. The events are constrained to occur in order

of sequence number subject to certain simple rules on event type.

To allow the flexibility in specifying the prospective ordering of

phases, three event types can be defined.

i. Primary events are the main sequential events of the simulated

trajectory. They must be assigned integral sequence numbers

and must occur in increasing order of these numbers.

2. Secondary events are contingency events that may or may not

occur during their associated primary phase. They are assigned

non-integral sequence numbers, the integral portion of which

coincides with the associated primary event and the fractional

portion determines the relative order of the secondary events.

A secondary event occurs during its associated primary phases

whenever its triggering variable assumes its §pecified value.

However, the occurrence of a secondary event nullifies all

other secondary events of smaller sequence number. The occur-

rence of a primary event nullifies all the secondary events

associated with its preceding primary event.

3. Roving primary events are events which have no specific prede-

cessor primary event. They are assigned an integral event

number and can occur anytime after all of the primary events

with lower sequence numbers have occurred. They provide the

capability of interrupting the trajectory at any time regard-

less of the phase number.

In order to detect the end of the current phase, the trajectory

synthesizer must monitor a candidate set of triggerent events

I. the next primary event,

2. all the secondary events associated with the current primary

event which have not been nullified by the oc_:ufetlce of a

subsequent secondary event,

3. all the roving primary events whose immediately preceding

primary events have occurred.

The trajectory synthesizer uses an iterative sche_nu to determine

the precise occurrt,L_c_, tim_, of thu n,_:_t trigg_,ring cvunt. The triggering

4.4 -3



variables of all the events in the candidate set are monitored at each prop-

agation step in time. If one of these passes from above to below or from

below to above its specified value between the current and previous propaga-

tion steps, it is singled out for precise determination of the cross over

point. The macrologic involved is shown in Figure 4-i for finding the first

zero component of an event triggering vector _(t). Note that the quadratic
interpolation logic makesuse of two back values of the triggering variable

in addition to the current one. The equations for the interpolating poly-

nomials are given in Section 11.3.2 on the acceleration projected gradient

algorithm.
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5. COORDINATE AND TIME TRANSFORMATIONS

5.1 Introduction

This chapter addresses the coordinate and time transformations to

be available in GMAS. It essentially reproduces the development of the

same :subject in REferences 5-1 or 5-2 but with some reduction in details.

Generally the basic equations are identical but some of the derivations

have been deleted. Additions to the material in Reference 5-I are the

inclusion of two additional coordinate frames: the mean ecliptic and

equinox coordinate frame and the vehlcle-fixed coordinate frame.

Section 5.2 describes the GMAS coordinate systems,, Section 5.3

defines the basic coordinate frames and their transformations, Section 5.4

defines the utility coordinate systems and their transformations and

Section 5.5 addresses time systems and transformations.
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5.2 COOIIDINATE SYSTI;M DESCRIIrI'IONS

5.2. I Body- Centered h_ertial (Geocentric, Selenoccntric, or Plane(occntric)

Origin:

Ilefe rence Plane:

Principal Direction:

Center of the body

Earth equatorial pl:um of epoch

Vernal equinox of epoch

SPIN AXIS

z

1

I
x\ I

X \,,J
VERNAL EQUINOX

Figure 5.2-1. Body-Centered Inertial
Coordinate System

I

Rectangular,Cartesian Coordixmtes (see Figure (5.2-1) :

x-axis ", the principal direction

y-axis _ thc normal to the x-taxis and z-axis to form a right-h:mdcd ':y:,tcm

z-axis _- the norm.',.1 to the ea.rth equator of epoch in the direction o[ tl,.c

,'u_gulaa" momentum vector

m

Withh_ the following f0rn'ulation, R, X, Y, and Z desi_lmte the position vector and

Cartesian coocdhmtcs referred to the me,%n equinox and equator of 1950.0. Simi-

larly, r E, x .., YE, and z E desig'aatc the position vector .and Cartcsi,m coordinates

referred to the merm equinox and equator of epoch and r, :;, y, and z designate the

position vector ,and Cm'tcsi.'m coordinates referred to the true cqninox and equa-

tor of_ e.tp___och. _ ................

Spherical Polar Coordim_tes:

r .". r:,dinl distance from the origin to the poinL being measured

a -,- fir'.lit ascension, tan -1 (y/x)

-_ t,c('linlitio]_, sin -I (z/r)
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5.2.2 llody- Cento red llol-ltin:_ (Geogi:aphic or ._lcuo_ra. .l)hic)

Orighl:

Reference Plane:

Principal l)i rection:

Center of tile hody

Body's equatori,a.l l)l:u_e (pl:uxc pcrpendicul,-a.t" to the

axis of rotation at a given epoch)

Intcrsectio_x of the prime mct'idia_x with the equator

Z b

_?-
GREENWICH_ - // " II

X b

Figure 5.2-2. Body-Centered Rotating
Coordinate System

Rectangular Cartesian Coordinates (see Figure 5.2-2):

xb-axis "_ the priz:cipal direction

y_-a,xis .,. the normal to the x b and z b axes to form a right-handed system
Zb-aXis _- the direction of the a.,ds of roLxtion tow,'u'd the uorth

celestial pole

Geocentric Sl)herical Coordinates:

rt, "- radial distance from the origin to the point bein_ m_utsured

h ",- longitude measured east from the prime meridian, t:m -I (yt,/xt,)

",- latitude measured fx'otu the equator, sin-_ (zt/rb)

Gee(loll(' _ld_oric:_l ('oot'tlinates (scc Figure 5.2-4) :

h " the l)erl)cndicular tlistmwe from the surfat't_ of thc ellipsoid model to

the point b_'iJ_K me:_sured

', th_. same :l._ h)tv:itu(Ic mc_sured in the rtcocentric sl)heri¢_l ('oot'din:_tos

; ^ the [_eotlcti(' l:ttiltulc al_-lt, I)_q,.vccn tht: vc, ctor norm:Ll to the cllil_oi,l

model l_as:_i_: tllrou_;h the l)oi_t of intet'c._t and the e(lU_!ori:_l _l:mc

• ' the gcot:cmt-ic l:Ltitutle of a 1)oint on tht: ol!ipsoid

(;eocleti(. coordinates :_rc use(1 to reference a point from the surface _,[ a body

that is an ellipsoid el revolution r:_tixc,-" than a sphere.
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5.2.3 Local Pl:me System

Ori,_in:

Rcfcrcnce Plane:

Princilml Direclion:

Center of the ,'efercncc body

The axes arc defincd indcpendcndy of a reference

plane. The x,o - Ytp plane becomes the "rcK'rcace
plane"

The principal axis is along the radius vector from the

origin to the satellite

Figure 5.2-3. Local Plane System

Rectan_flar Cartesi;m Coordinates (see Figure 5.2-3).

xl_ axis -- the principal direction

yt-axis-- the axis displaced from the inertk_l y-re\is by the satcllitc's right
ascension and lyin_ in the originzl x-y plane

z -axis"-the direction that forms a right-handed system withxa, , and y_,,.
tp

It is displaced frcm the inertial z-axis by the satellitc's declination

Sl_licl.jt'al Velocity ('oor, linates:

V " ti_e velocity vecto)"s magnilu(le ( , )

." " the flight path an_]e nwasurcd from the princil.al direction to the

velocity vector

h" tl_e azin,uth ;mi,.le :_casurcd clocl.xvisc l rom the "L,, axis l,, thc

ln'Ojcclion of the vch_city vector tm Ibc v_. - z_, plane
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, / • v5.2.'1 "l'_l_oc'cntri¢" 1.oval "fangcnt (I,.:_;_, North/t !0

Origin:

Refcrcnce l_lanc:

Principal Direction:

Observer (topoccntric)

Plane tangent to the cllil)soidal earth model at tho
observe:"

Local east direction on the pla,m tangent to d'.,. earth
model

Zb

Z_T

XIT

Figure 5.2-4. Topcentrlc Coordinates

Rec_ngular Cartesian Coordiwates (see Figure 5.2-4):

x_ -axis _, the principal direction

Yt t-axis " the' a'<_s lying i_ the reference plane that l_oints north

z_t-axis " the Ul)ward direction alont; the geodetic vcrtiL'al
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5.2.50rl_it Piano

Origin:

Reference Plane:

Principal Direction:

Center of the reference body

The plane of the orbit

The radius vector from tile ori_tin to the satellite

z

. 4Yop

NODE

Figure 5.2-5. Orbit Plane Coordinates

l_eetangular Cartesian Coordinates (see Figure 5.2-5):

xod-axis-,,the direction along the satellite's position vector, _" (R)

yo_ya>:is _- the direction norm_ to .x,,)) - z l>l._me. ,'_'_

Zop-axis "- the direction along the vector r x v (N)

The Cartesian components of the orbit plane system when the satellite is at

perifocus are denoted xp, yp and z_, (see Figure 5.2-6) or (P,Q,N).

Y°P(T) { p(Q) _ :°O(R)

Figure 5.2-6. Orbital Parameters
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5,2.6. Kc!Hcrian Elements

Origin:
Rc fe fence Pla zLc:

Principal Direction:

Ccntcr of the refcrencc body

Equatorial plane perpendicular to the central body's

axis of rotation

Vernal equinox or prime meridi_tn at a given Cl_och.

Kepleri:,n Elements (see Figures 5.2-5 and 5.2-6):

a _- the semimajor axis

e _- thc eccentricity specifying the elongation of the orbital conic
section

i _- the inclination specifying the orientation of the _ateHitcvs orbital

plax_e to the equator of the central body

fl _. the right ascension of the ascending node, i.c., the angle

measured eas_vard along the equator between the princip:d direction

and the point where the satellite crosses the cquator traveling in

a northerly direction

-,- the argument of perigee, i.e., angle between the ascending node

and fl_e perifocai point measured positivo with increasing mean

anonm ly

M "- the mcan anomaly, i.e., product of the satcllite's _ucan ar_dar

motion and the time elapsed since pcrifocal pa.qsal_e
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5.2.7 Vehicle Reference System

Origin: Pre-determlned fixed point in vehicle called the reference

point orlgin (RPO)

Reference plane: Plane normal to longitudinal axis containing RPO

Principal direction: Reference direction within body

_L_._._ _ .... ..-" . _ J,_.

Figure 5.2-7. Vehicle Reference System

O
Rectangula¢ Cartesian Coordinates (See Figure 5.2-7):

X R _ reference direction within body

YR _ direction completing right hand system (Z R x XR)

Z R ._ longitudinal axis fixed in body

This system is used to define tank locations, mounting angles, center-

of mass locations, thruster locations, unit thrust vectors, body-fixed

sensors, etc. (See Reference 5-3 or 5-4).
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5.2.8 Vehicle Attitude System

Origin: Center of gravity of vehicle

Reference Plane: Plane normal to spin axis or longitudinal axis of

vehicle

Principal Direction: Projection of reference directioa onto reference p

plane

Figure 5.2-8. Vehicle Attitude System

Rectangular Cartesian Coordinates (See Figure 5.2-8):

IY_. x Z_\

IZ_c x UR I where UR is known vector in reference direction

vehicle longitudinal axis

This system has been selected as a compromise between the GTDS format

(Reference 5-1) where the Z-axis (third axis) is always the "special"

axis and the attitude system of OAMP (Reference 5-3) where the X-axis

(first axis) is the vehicle spin axis. The "reference direction" used

in OAMP is the Earth-vehicle direction (because the direction so defined

is the nadir point -- center of Earth disk -- used for vehicle pitch

control). Other "reference directions" considered migh= include vehicle-

to-sun or local north.
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5.3 Basic Reference Framed

5.3.1 Introduction

The basic reference frames of GMASinclude the following:

I. Inertial equator and equinox of 1950

2. Meanequator and equinox of date

3. Meanecliptic and equinox of 1950 and of date

4. True equator and equinox of date

5. True equator and prime meridian

This section defines these frames and the transformations required to

move from one to another. The fundamental reference frame is the

inertial equator and equinox of 1950 to which the other frames are

referenced. The other frames are frequently used to describe satellite

states.

A coordinate frame is defined by specifying the origin of the

coordinates, the reference plane, and the principle direction in the

reference plane. A detailed discussion of the background of coordinate

transformations is provided in Reference 5-I or 5-2 from which much of

this chapter is excerpted. This chapter will simply suncnarize the

mathematical details of the above transformations.

Some discussion is required to define the relations between the

above frames. The equinox, _ , is defined as the intersection of the

planes of the earth's equator and the ecliptic. The equator is defined

as being normal to the earth's pole. The primary motion of the equinox

is called precession and is due mainly to the precession of the earth's

pole. The precessional motion of the mean equinox is due to the combined

motions of the two planes, the equator and the ecliptic, that define it.

The motion of the celestial pole or of the equator is due to the

gravitational attraction of the sun and moon on the earth's equatorial

bulge. It consists of two components: iunisolar precession and nutation.

Lunisolar precession is the smooth long-period motion of the equator's

pole around the ecliptic pole and has an amplitude of approximately 23.5

degrees and a period of approximately 26,000 years. Nutation is a rela-

tively short-period motion that carries the actual, or the true, pole

around the mean pole in a s_ewhat irregular curve w..th an 3plitude of

approximately 9 seconds of arc and a period of approximately 18.6 years.
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The word "mean" indicates that nutation is being neglected. The motion

of the ecliptic (i.e. the meanplane of the earth's orbit) is due to the

planets' gravitational attraction on the earth and consists of a slow
rotation of the ecliptic. This motion is known as planetary precession

and gives a precession of the equinox of approximately 12 seconds of arc

a century and a de_:rease of the obliquity of the ecliptic, the angle

between the ecliptic and the earth's equator, of approximately 47 sec-

onds of arc a century.
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5.3.2 Hean Equator and Equinox of Date

The 1950.0 coordinates are trans£ormed into the mean equator

and equinox of .date by correcting only for precession. Denoting the

1950.0 coordinates by R and the mean of date by _E we have

rE =

where the elements of A are

(5.3-t)

rill =- sin _o sin.fp + cos _,, cos _ cos-_
",p . p

"112 --" -- COS [ Sil_ : -- .qil_ /. COS ._ COS r _ -

-o .p -o _p p

,'II.I = -- CO.'; "-" -_
"1 ) F, III P

;121 :: .¢;iI_ X COS "= 4 ¢O.q ," _;in.': cos -_
o i, -o p ' p

n22 :: COS _, cos ,: - sin ' sivI "= -_
"n 'p t_ o _,p COS P

a23 :" - .';iJ_ :i, sin :a
P

;131 -- COS '_o Sill ,'"P

n_ = - sin ,_. sin ,_'
• |l

,"133 - COR "]
P

The angles "'0' ,,, and }p arc _,,ivcnby

(5.3-2)

_0 + "2304." O.IS T + 0"30 ''1 "'_• _ , 0 '0179 "1"_

: 200,1" _g5 T - 0".12(, 1.2 -- 0_'4Io '1 '_ ( b. 3-:_ )

wh c ;'c

I'
, 230.1 _).IS T _ l.OnA T: - (1 01_12 1 ,_

T"- the l.:pl,emeris time in Julian ('enturics (,)Go_o Julian days) clal)scd from

epoch to 1950.0 (Jl)" 13 32S".S)

Jl) of t o -2-; _ 2.43._.,g 23357
T.--

.16525

The time derivative of A is assumed to be negligble.

coordtaates are transform_u as follows:

: " *

rE =AR

(5.3-4)

The velocity

(5.3-_)
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5.3.3 Mean Ecliptic and Equinox of Date

Denote the state vector in the mean equator and equinox of

date frame by (rEl _E ) and in the mean ecliptic and equinox of date

frame by (rEC , _rEC). The sets of vectors are then related by the

equations

rEC = M _E

where the transformation matrix M is given by

M _. 0cos_ s in

-sin_ cos_J

where the mean obliquity _ is given by

= 23.°452294 - .°130125 x i0 "I TE - .°164 x I0

2 3
T E + .°503 x 10 .6 T E

-5

and where

TE,,_ t_u time in Julian centuries (5_525 Julia_l Day_;)

0d _helapsed from epoch to 1900 Jan I- (ET =

JD 2415020.0).

(5.3-8)

5.3-9)
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5.3.4 True Equator and Equinox of Date

The transformation from the meanequator and equinox of date
(5.3.2) to the true of date system involves correcting for the
nutation effect. Nutation is measuredas cyclic changes in the
obliquity, the angle between the equatorial plane and the ecliptic,
and the longitude of the equinox. These changes in obliquity,k ,

and longitude, _,#, are assumed known. They are input to GTDS by

fitting polynom:als through the JPL ephemeris data (Ref. 5.3-3).

i

Denoting the true of date coordinates by r, r and the mean

of date by (r E , "_rE)we have

r = NEE

r = N£E

where the elemento of N are

(5.3-£0)

Illl " COX X ,;,

1_1_ - - sin ,_ _: cos T"

nl3 = - sin 6q,._i1, T

n n _ ._i, "-y.cos'_

(5.3-ll)

I'123 -. t't"_, _" . CO':, : Xil'_ -- _ill Ct.'_

and where

1'13t : silt 5_,, .,;it_ ,_

1132 :

1"133 ::

, ° • • --- _- .4(.')_; _;,, SiFt COS - CO_ , .'-;ill ,..

!

CO'_ " L' Sil'_ .';il'l_ , _.'0_, , CON t .

is the mean obliquity given by (5.3-9)

E. = _ + B_ is the true obliquity

B# is the difference between the Longitude of the true

and mean equinox of date

with86 and _# computed as described above.
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5.3.5 True Equator and Prime Meridian

The transformation that relates the true of date coordinates

to the bode-fixed coordinates accounts for two separate effects.

The first relates the true vernal equinox to the prime meridian of

the rotatilg p.)anet by means of the angle _g, variously called the
Greenwich _idereal time, the Greenwich hour angle of the true equinox

or epoch, or the date right ascention of Greenwich [see Figure 3-9).

The second effect, called polar motion, accounts for the fact that

the pole of the body-fixed axis, Zb, does not coincide with the

body's spia axis, the pole of the true of epoch geocentric axis.

The first of these effects transforms the true of date coordinates

to pseudo body-fixed coordinates. This pseudo coordinate system

would be precisely the body-fixed axes if z = Zb, that is, if polar
motion is omitted.

5.3.5.1 Psuedo Body-Fixed Transformation

Tile true of date coordinates transform into the pseudo

body-fixed coordinates as follows

", (%) =

m

rb, = B I r

io0oinil
where the true Greenwich sidereal time is obtained fro_'_the mean

Greenwich sidereal time

.(_ UTI + 6)' 38 = 45'836 _ 8640184:542 TU + 0:0929'I'_

UTl,_seconds of UTI time (see Section 3.4.5) elapsed from

January i, 1950, Oh UTI

T u _ the number of Julian centries elapsed from 12 hours

UTI January O, 1900 (JD = 2415020.0) to the UTI time

of Epoch.

by applying the correction ag = _GM + AH

where
aH= 8_ cos(¢ +8¢)

Differentiation yields the velocity transformation

r b' = B1 _'' + B1 _

!)] = cos - si,1 ,, 0 &
!

0 0 0J

5.3-6
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(5.3-t3)

(5.3-14)

(5.3-15)

(5.3-I(,)

(5.3-17)
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5.3.5.2 Body-Fixed Trans formati,_n

The principal _xis of the earth (angular momentum vector) is

not coincident with the spin axis (angular velocity ve:tor), and it

moves with respect to the latter causing the polar motion effect. The

path of the pole on the earth's surface is "semi-regular" but unpr(,dic-

table due to random shifts in the earth's crust, etc. The motion of

the pole is given with respect to the pole at some established epoch.

The pole at the established epoch is referred to as the adopted pole

(PA), and the present position of the pole is referred to as the true

pole (PT)" There are several adopted poles in the literature. Due to

small size of the polar motion correction (it tak_,s place iu a square

less than 50 meter_ wide), thu polar region of the earth m_y be cousL-

dered a plaue ,,ud the transformation fr_u one adopted pole to another

reduces to a simple plane translation. Neglecting the earth's slight

curvature at the pole, establish a left-handed rectangular coordinate

system centered _t PA with xb axis directed along the Greenwich tacti-

cian and the Yb axis along the meridian of 90 ° west. (See Figure 3-10).

The coordinate:; of the instantaneous pole PT are measured in terms of

and yp components using units of seconds of arc. The measurements
x_ Xp and yp are performed by the International Polar Motion Service

and published by the U.S. Naval Observatory•

rb = B2 _ (5.3-19)

Since Xp and yp are small, all cosine terms are equated to unity, all
sine terms equated to their angle, and all products neglected. Thus

B 2 becomes

5•3.5.3

132 -

mB

1 0 x

0 1 - yp

True of Date to Body-Fixed

(5.3-20)

- × y.. 1p

The complete transformation between the true of epoch coot-

dinate system and the body-fixed system i-_ given by

rb = B2 (Xp,yp) B 1 (_g) r

where B 1 is presented in Equation (5.3-13) and B 2 in (5.3-20).

(5.3-2Z)

The time derivative of B 2 is negligibel, therefore the

velocity is transformed as follow:_:

o
m

b = B2B 1 r + B2B 1 r

where B 1 is given by Equation (5.3-19).

(5.3-22)
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5.3.5.4 Mean of 1950 to Body-Fixed

The total transformation from mean equinox and equator of

1950.0 coordinates to body-fixed coordinates is the product of the

transformations in Equations (5-1), (5-10), (5-17), and (5-19)

F b : B 2 (x,,.y_) • n, (aR) • N(,_.b_'.) • ^(_o.0 ,_'p) R.

Hereafter this transformation is written

_ = ll.G_
b

where

!i : B_ (xp.y.) B l (a)

15.3-23)

(5.3-24)

(5.3-25)

G -N(_. ,_,i') A(:.,,_,,,_,). (5.3-20)

The matrices G and H depend only on time (not on satellite

position). The matrices N, A, and B 1 vary so slowly with time that

their rate of change can be n_glected in velocity tran_'formation_.

The matrix B 1 chan,-es in proportion to the earth's spin rat,,; thus

its time rate of change, given in Equation(5.3-19),must be accounted

for. In GTDS the G matrix i_ svnthesiaed during prep_ocesvin-" cou:pu-

_ations using information f:o_:: an ephemeris tap,:. Its elemeut_ are

stroed as polynomial functions of time for use during problem e.xccu-

lion. The H matrix is optionally computed either precisely as shown

in Equation(5.3-20),or approximately by neglecting polar motion (e.g.,

B 2 = 1).
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5.4 Utility Coordinate Systems

5.4.1 Introduction

Utility coordinate systems are those systems that are used

internally in GMAS for the convenient computation of certain parameters.

These systems are discussed in the order of the illustr_ted descriptions

of Section 5.2. The transformations addressed are as follows:

I. Spherical-Carteslan

2. Geocentric-Orbit Plane

3. Earth-Fixed Geodetic

4. Earth-Fixed to Topocentrlc

5. Keplerian-Cartesian

6. Iuertial-Vehicle Axes

Both the transfoL_ations and the Jacobians of the transformations are

provided.
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5.4.2 Spherical-Cartesian Transformations

5.4.2.1 Spherical to Cartesian

Using the spherical position coordinates, r, ._, and ,_, that are de[ined in ._:ection

5.2-l,thc transformation to Cartesian coordinates is seen l_om Figure 5.2-1 to be

[i]I= r os 5 sin .

sln ,_

(5.4-l)

@

To transform the spherical velocity coordinates, V, .., and /,, (lcscribcd in

Section 3.2.:}, it is convcnicnt to lransform to lhc local pl:,:m coordin:ttc system

(see Figxlre 3-3) nnd then to the bodv-centercd inertial " _ ', C a1"tL..qI:Illcoordinate,

system. If the. local plane coordinates, x _,' Ylp , and z_,,, are fixed incrtially
(nonrotating), ,- may be exprcssed as

I p

r
rip = Y, - V in A sin . (5.4-2)

k i Lcos A sin

Tim tran<fornm_ion b_.twccn the lot':tl ldanc :m(l tlu, l,ody-ccntorcd inL'rtinl

(,aitc.,:;i:tncoord:n::i,, ,:v_tcm-; is

who I_

¥I,, = C':" (5.4-:))

C ::

I_ t'¢).',; _ CO F. :z

sill O.

s i, 5 cos ,_

cos _ si,i a sin 5t

COS o 0 ,_j .
- sin 8 si,_ a cos

(5.4-4)

Since the local plane system is fixed inertialL the velocity vector in

Equation (5.4-2) may be transformed to the body-centered inertial Cartesian
axes by means of the traasformat£on C as follows

• °

¥ = cT _:jp. (5.4-5)
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5.4.2.2 Spherical to Cartesian Partials

The partial derivatives of x, y, z, ._, _', and "2 _vith regpect t,J r,__ , _, V, A, :u_d

/_ arc -
3¥ ¥

- (5.4-6)Br r

(5.4-7)

w

%irl :" siri ,_

-t'05 ."

-- Z C0.% _1

:'- Z SiI_

dx2 + y2

(5._-8)

"C')T _T _-I: _¥ " (5 4-9)

<' V D A Zi /,, 0 r

'-- (5.4-10)
"0 ,'i

a_
a= !

_- COS_

"; sil_ a

V (cos 5 cos _- cos A si, ." si,_ <_

(5.4-i[)

-
_ r (5.4-12)

D V V

and

_"F
m _-V

[-

-;'-A
-%, iii ('';i;I J. _ill 7 _.i,I : t Cf)_ A t.",-;

_i,, A, ,,_ - _i,, ,.

Ics'os.z (cos _ sin J • si,_ _ cos ;3 cos A) + sin ,_ cos.3 sill A /

"3

/

ila a (cos t_ .sin _7 + sin 5 cos ,? cos A) - cos _ cos 5 sil_.A /

5_sil_ .: Siii ._ - COS .'.: COS <_COS A

( 3.4-1 3)
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5.4.2.3 Cartesian to Spherical

The invcr._e of th(- preceding t_'ansfo_'mations is desc_'ibed in the followin;,, text.

The sphcri¢'al radius, _', is given by

l

(5.4-L5)

l'rom Figure 3-1 the right ascension, a, and declination, ,_ , of i: are

nnd

•/-x2 y2 :,
sin x - z cos _ : _ ,r K b

r r 2 '2

xin ,'_- Y cos a : x

_×2 _ y2 Sx2 ÷ y..

0 < a _< '2,:.

(5.4-Io)

(5.4-17)

"l'itc right ascension is measured positive east from the ine,'tial x-taxis. The

declination is measured positive north from the x-y plane.

The velocity vector's magnitude is

#2 }2

and the azimuth, A, and flight path angle, /3, are obtained from

(5.4-18)

sinA-(x§-Y'_)
rV

, COS A: y(y}- z})-x (.,,_.-_ _)

r 2 V

0SA_2:,. (5.4-1q)

-j

I V
r.: r" •COS

rV

r7 77

---_<.2---
2 2 (5.a-2o)
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5.4.2.4 Cartesian to Spherical Partials

The partial dcrivat'.'ves of r,., ',_, V, A, and _ with respect to x, y, z, ._, _', and
arc

r {T

¥ r (5.4-21)

;,,%

¢' r"

- Z.._ 1

l

_-- ! -- Z V

( _5 '2

(5.4-'2"2)

(5.4-23)

('" V

---7L-._ -_ 0

(" r

(5.4-24)

_A 1

G,2 i-2) (x 2- +3, 2 )

q'(r _- z i) -(x#-,," ;3(._ "_- z < )-_x z _'I/r--r

(×_' v k) _" ,'-_"" 'r_-- xx- * , ) l

i5.4-_5)

_ r 2 _,2 _ _-'

(5.4-26)

• °
- 0 (5.4-27)

I_V T r

_¥ v
(5.4-2B)

and

aA

b¥

0 .'_

--'__._
L_ r

1

r (\,2 _ __)

y

T

,-:IV2 _ {_ V_

5.4-5

T"

(5.4-29)

v

(5.4-30)



5.4.3 C_'ocentric to Orbit Plane

Tile unit vectors in the x r, Yn,,, and z directions (see Figure 5.2-5)
measured in the I)ody-c'entere(l inertfi_l Cartesian system are

tha t are

1:..,

i;ot

V=K_ 0 (5.4-3t)

"to x I(,

W=

whcrc _" ,'uut ro are the earih-ccnte_'ed l)esition and vclicity vc_.qors use.d to dL.,-

tcrmine the orbit. |)lallc coordinate system. If Equations (5.4-31)are expanded,

thcy yicld the following trans[ormation rcl:ttions b_twccn the orbit idaae t.o-

ordinates and the bo:[v-ccutercd inertial C:t_'tcsi:_n ('oordin2,tc._

whe re

E _.

7 =E7 (5.4-]2)

-U U
Y

Vx V
Y

W W
L _ y

u:

V z °

I_

(5.4-33)

Regarding the orbit plane systcm as fixed inertially, the vclocity transforms as
follows

* °

r = E -f (5.4-34)
op

and the position and _'clocity partials arc

Op -- o!.)

,_ r 21

- E. (5.4-35)
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5.4.4 Earth-Fixed Geodetic Transformations

The transformations between the body-centered inertial

Cartesian system and the geodetic axes system (described in Section

5.2.2) involves modeling the earth's figure.

5.4.4.1 Geodetic to Earth-Fixed

R
e

Suppose (h,A,_) given. Then compute N =
$ *_ . "7

where R e is the equatorial radius of the earth a_ e is the ecce.-

trieity of the earth figure wi_h e 2 = l_-_-_ 2
_Re! = f(2-f) where Rp is

the polar radius and f is the flattening of tile earth°

Yl, = (N + h) cos,; s i. \/

I
LZ,,j UN, ),- ,.' .,i,, .]

(5.4-3b)

The partial derivatives of xt,, YL,, and z_, with resl)eet to h, ._, :rod ,'., are

3 Yu/i'h - [¢o. # si)_ ' i5.4-37)

• ,- (X . I',) cos ' sin k-

'_ Y., ,' :- (N _ h) cos ,," t'o_ .\

'l_'" zl. /_ >,_j[ 0

(5.4-38)

Y v- c();< ."

! "_,,_. ".i)) \ i

[ _.} z|,/ , I) _ N (I - _" I s,l)
! .... [ t" (.) .'-, )_

(5.4-39)

(5.4-4_0)
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5.4.4.2 l.htrth-I,'Lxcdto Geodetic

In transforming geodetic coordinates to earth-fLxed coordinates, the point of

intersection of the height normal vector and the ellipsoid i,_ given. In trans-

forming front earth-fixed to geodetic, this point is not known a priori. This

complicates the tr:msformation. Since there is no set of equations in closed

for m givinb _ this '.ransformation.

Two solutions are presented. The first solution is itcrative and can yichlany

required degree of:lccuracy. The second solution is a trt,ncatcd binomiul ex-

pansion that ,nay be used when accuracy requirements arc not so strin_,,cnt.

Tile iterative technique is used iwimarily to deter'mine gcod,:tic tracking; station

positions where high ;l_'ctlr:tcy is rcc0dred. For this use (and for lld:tf c:irth

satellites), the, approximation h ... N is satisfied, aud since :he earth's figxlre

is nearly ._phcric:ll, c" "" 1.

]ntroducting t, the zt, intercept of the normal vector, it Call be shox_al that

_ t'2 zz,. (5.4-41)

!
Using I?quatioa(5.4-4t)as an initial ¢stiIuate for i, the followin,; seqt:cnce of

equations may be solved iterativcly to yield a _uhttion lot h :ultl,,.

,.: : z,, _ t (5.4-4:)

Z

s in & --- t (5.4-44)
N+I_

R@

N --- (5.4-45)

_1 - e 2 size-' 4'

t =N e 2 sin q... (5.4-46)

Upon convergence of t, ,¢ and h are obtained from Equatioe_s (5.4-43) and (5.4-44).
"l_e longitude _, is

)k = tma "l

5.4-8

(5.4-47)



A second, eomlmtaLiolmlly simpler, procedure for coml_utin_ the \':_luc:_of

alld }I tO ,q specific4 point,P, isusefulwhen accuracy requiren,ents are less

stringent. The latitude ,: is

7b l h
tan ¢ = =

(l - L"2) xb,

The geocentric latitude is

The (spheroid) light is

approximated by

Sii_ -I _ •

\h)/

t-_.4-48)

]i --- I"b -- rs. (5.4°49)

where

|"

R,.(I - f)

,I1- (2 f - f2) cos2 ,,,

i 5.4=50)

'l'i:e l)arti;_l d_.ri\';lli\'cs _,f h, , ::rid with rVSl,CVt It) x h' Yl)' ,_!:,l Z
are obtained

h , Yt, :

II,' ," Zb3

t •

2 ;,(I - t':) -i,,, , cos ,;
- _ :-' 3_

I IO 'j''' '_ xt'
• , . #

/i,sit1210_:',]''] _'_ ¢/(_ Yl,

I _ <.,,,_ _,,

(5.4-5t)

I and

, ¢ / xl,

8 X' 3 $'h

3 >,/b zl,
I

1

(q +,,'> L

(1 - ,a')

_q , ,., [(1 - o_)-_

-- X b Z b

L "

(5.4-52)

(5.4-53)
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5.4.5 Earth-l.'ixcd to Topocentric Local q'.'mRent (Fast, North, Up)

The topoccntric local tangent systcm, described in Section 3.2..1, is used in pro-

cessing gt'ot|nd I)r.sed observation data. The tr:ms;formation from geocentric

carth-fL\cd coordinates (x_,, yt,, z_,) to local tan,:..cnt coordinates (x_, y_, zt_)
requires a tv:tnslntion along the geocentric radiqs vector to the station and a

rotation of the a.\is thvot.[,.h the station's longitudt_ and latitude an._lcs. The

earth's shape and station identification parameters arc defined as follows

"t- th,, I)t.l_'-fi':ctl t'_,l_r_lin:th':: of tl_e statl-,n

,' II:_' I;t',,,h'|lt" ].ltllt_,l,t Iq 1!:_" :.',.Llh,tl _l,,':.it|Vt" _:,'_tlll

,* the _t,,aCt, ll[lic l_l_Iu,!t, _1 t!,,, -I.tlIo1_

\ _ the ltmgitude ol I_ ',_t. station _1,,_:II1_o ca'.t_

ia - tlw height of tilt' .,,Lation al_ovt, I}td lt,[_,_-_,llt't, eliisp_i,1.

The local tangent coordinates of a point in space, x , Yu' and Zb, may be
written as

fit - Mlt (]"_ -¥,.)'

_'. . °

lit '_lt I1>

II(N , h ) cos ,_, ,'os ' "]

(N., , h ) cos.,'.., si,_ ',

L(N, " h, - c_N,) si,,,;,i

(5.4-50)

N$

_1 -- (2 f - f-') si,,"

(5.4-57)

MI t

- sin .\

= - si._J'cos,\

cos q-cos k

COS _

-sin_sin\

cos ,: sin _..

0

cos

sin ¢

(5.4-58)

Since the local tangent system, delcrmined only by the station I_:_t'ametct's, is

not a ftm,.'tion c,f lhc cotwdinatcs of a given ca,'th-tk\cd poi.,_i, the lmt'tial:: of it:; ,

COlnl)O.'.l::l,L_ wtth resp::t.'l to tile carth-fLxed conq,'oqcnts are the rcspccti','c

elements of the _I_, _natrL\ given by

3 Yt t 3 Yt t
.- M_t" ( 5.4-5 9)
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• ° _ ."5.4.6 Keplcrian- Ca1 tt stun Transformations

5.4.6.1 l.:eplerian to Cartesian Coordinates

First cons, idcr the transformation from the orbit:fl elements (a, e, i, C, ,,, , M) to

the orbital rect;m_d:u', coordinate (x ,5;, z r , k,, 9., _.,). The x. axis is,o
directed toward perigee, tim y. axis is in the plato of motion advmaced /- from

the x -a.xis in the d!ycction of motion, .-rod the z. axis completes a right-ha.nded

system.

m_d

_7.p

..'o_E- L'

I

L °

"I- j: ,'ns F

_." (t - c cos E)

_2pJ

(5.4-60)

where the eccentric anomaly E is computed from Kepler's equation

(M=E- e sin E) by the following iteration scheme.

(5._.-b_.)

Fct (En) = En - esin En-M

D = t - _cos E -.5 F (En)n n ct

-I
= t(EnEn+ 1 En - D n Fc )

E = M - _sin M
o

n:O, 1,2,...

(5.4-b2)

The orl)itM rcct:uv'.v,l:u" coordi'_atcs are traJ_slorn:_'d to inertial t':u'te._;i:m

position and velociLy cooL'din:tics as follows

The tic, merits, i _ , hi the B x 2 rotation m:ltrix, l', are
,!

I)ll : Co.n Q COS -.'-- sin _ L'Os i sin :,.

P12 - - cos l_ sil_ _,: - sin _ t.'os J Cos

l)21 " sin _)CO._ .... ('o.s _; ('o", i sin ",_

P-_2 = - sin _ si_:.: _ cos f. ¢'(J._ L cos (_

P_l : sin i sin..

D32 : sin i Cos _'.

5.4-LL

(5.4-03)

(5._.-64)



5.4.6.2 Keplerian to Cartesian Partials

Referring to equations (5.4-63a and 63b) of the previous

section, the paltials of the transformation may be written

_rp Or ?rp?F =p =p
_(a,e,M) @(a,e,M) ' _(a,e,M) 0(a,e,M)

8F _P - 8_ (_P -

_(O,,o,i) = _(P.,w,i) rp, ,'((_,_,i) = ,:(_,_,_) rL_

where, if n denotes

P

i'(n, ,', i)

p

;O(n., e, i)

ti_e mean motion (n --_//_/a3) ,

I ( ,2,):' r (1- t"_)

:' r (1 - t,2)

0 0

,'p
m ."t_

0 l)

o

I p •

m

i"

• l,i

2;I

0

t. .ll - <'" (xl, _ :l L, I

0

t,) t(\,,l', :t,,),l

m

-'_in_)cos',.- cos flcos i '_in,,)

¢oss, coS:,.-Sjl'l['lCos i ._il'i,,)

0

_-cos_siil , -- sill "cos i cos,.)

(- sil'li/.'-;ii'l , # COS [}cos i cos.,)

Ji

(S ill i cos ,)

si'l :_si_, i Si,_ ,

I t'cls _,.J%it'_ i siia ,,
Cos i .',ill ".

t' ) x\

L" j1 - t,z3

0 t

(- si,_".siu,, co.'.Ccos i cos

(- cos'>_si_..,- si_l_)cos i cos,,_,

0

(-cOS ,.co_,. t sJl_ _.:,','"; i .',il_ -t
!

(-silll, cos <,'- COS i]cos i si,I .hi[

(- sin i sill ,,5

$i,l i sil_ J cos ,,'-_

!
-,.'o,; ;} .',in i cos : i

I
!

Cos i cOS c. t
._J

(5.4-b_)

t 5.4-0b)

t _.';-('1)

(5.4-_8)

(5.4-b9)

45.4"70)
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5.4.6.3 Cartesian to Keplerian Transformation and Partials

Transformation

Radius

Speed

Angular blomentum Vector

Angular Momentum blagnitude

Semima j or Axis

Similatus Rectum

Eccentricity

Inc lina tion

Eccentric Anomaly

Mean Anomaly

Period

Pn=rov (n_r Imit mass)
.... C:}J &" ........

Longitude a[ Ascending Node

True Anomaly

Argument of Perfocus

Periapsis Radius

Apoapsis Radiu=

r =1_ 1
v =l!l
h = r x i = (hx,hy,h z)

h =lhl
a = _r(2- - rV2) "I

p = ,''IrV) 2 - (r._ {_02]

e = ( I p/a) =

sini = (hx+h2)/(rV)

cosi = hzltrV)

sinE = e-lir • £/Vr_)

cosE = e'l(1 - r/a)

M = E -, e sinE

P _ 2-(a3/_) ½

Energy = -#/2a

(5.4-71)

(5.4-72)

(5.4-73)

(5.4-74)

(5.4-75)

(5.4-76)

(5.4-77)

(5.4-78)

(5.4-79)

(5.4-80)

(5.4-81)

(5.4-82)

(5.4-83)

(5.4-84)

sinQ. = hy/h

sinf = _V_'r • r/(_re) ,

cosf = ,,(p - r)/_,re

sin(,,+f) = _-_n rz,
llr

ryh.. rxhy
cos(,.'+f) =-- _hr

rp = at l-e)

r a = a(t+e)

ccsn = hx/h (5.4-85)

(5.4-sb)

(5.4-87)

(5.4-89)

- 45,4-90)

45.4-91)

Partials: The Jacobian of the transformation is given by

_X _X -i t
_ • • • •

i

-i °i ::.
.

, °a ('M -t

_..

(5.4-92)
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5.5 Vehicle Orientation Systems

5.5.1 Introduction

A critical part of mission analysis has to do with the atti-

tude of the spacecraft. GMAS will permit the simulation of the

nominal attitude during cruise segments by any of three reference

systems: inertial, local vertical, and orbit plane. The attitude

behavior to get into or from the required maneuver attitude may be

modeled by any of three sets of attitude reference system._: inertial

Euler angles, relative Euler angles, and body rates. No six-degree-

of-freedom analysis will be made by GMAS. The prime transformation

is defined by the EIB_ matrix which de-of attitude-related studies

fines the conver._ion from the inertial system to the vehicle orien-

frame. This section addresses the computation of the [IB]ration

matrix during cruise (non-maneuver) segments of the mission. The

modeling of attitude behavior during maneuvers is discussed in Sec-

tion 9.3.

5.5.2 Inertial to Cruise Attitude

The computation of the FIB'] matrix defining the transforma-

tion from the inertial coordinate system to the vehicle cruise

orientation coordinate system will always be accomplished in two

steps where the first rotation defines the transformation from iner-

tial coordinates to the frame having the proper z_-orie_tation and

the second rotation "rolls" about that z,-axis to align _he x_-axis

as close as possible to the reference direction (See Figure 5-9).

Thus

where R is the position vector in the inertial frame an.i _r_, is the

correspond Lng vector in the vehicle orientation frame.

(5.5-1)

(5.5-2)

5.5-1



5.5.2.1 Primary _xis and First Rotation

The first rotation transforms the inertial z-axis into

direction of vehicle primary axis (spin-axls if applicable). This

transformation is defined by the EIBI] matrix defined by the differ-

ent primary axis references as follows.

Inertial Reference

Under this option the user specifies the prima-v axis iner-

tial right ascension ,p and decl_.nation 8p. The primazy axis is then

held constant in this attitude throughout the desired trajectory seg-

ment. The IB I matrix is computed once per trajectory segment.

Local Vertical Reference

Under this option the primary axis is always directed along

the local radius vector. Thus the inertial right ascension -p and _p

are determined at each computational event from the inertial position

of the vehicle R as follows:

u_ = _R/R = (Ux, Uy, Uz)

sin8 -- Uz cos_ = + VI-Uz 2 0\,_ 8 \V 180

sina = Uy/COS_ cos= = U×/cosa 0'_ " _ 360

Normal to Orbit Pla_e

Under this option the primary axis is always directed normal

to the orbit plane. The inertial right ascension ap and declination

8p are computed from (5.5-4) and (5.5-5) after computing

_u = (_R x D/I_R _ XI

After computing the inertial right ascension and declination the

first rotation matrix is determined from

cOSa sin_

EIBI3 =I -sln_

Lcos.Sin_
sinacossinS_ -c_s81

sina cos8 sinSJ

(5.5-3)

(5.5-4)

(5.s-5)

(5.5-6)

(5.5-7)

5.5-2
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5.5.2.2 Reference Direction and Second Rotation

The reference direction _R locates the X= axis in the

vehicle orientation system (see Figure 5-8). It therefore defines

E ] The reference direction maythe second transformation matrix IB2 .

be computed according to the following options.

Inertial Reference (Star Sensor)

The _R direction is _pecifled by the user by defining its

constant inertial right ascension _R and declination 8R. Then the

_R direction is defined by

_R = (c°s_R cos_R, sln_ R cos_R, sinSR)

Solar Reference (Sun Sensor)

The _R direction is computed as the vector fr_n the earth

to the sun.

_R = "_E/RE

Local Vertical (Center of Earth Disk)

The _R direction is computed as the vector from the vehicle

to the center of the earth or equivalently as the negative of the

earth to vehicle position vector. )_ote that the user cannot specify

a local vertical reference for both the primary axis and the refer-

ence direction.

UR = R/R

The second rotation matrix I IBII may now be computed. Write the

first rotation matrix (5.5-7) as

' ']B1 = i i Y1 I Z 1
! I

where the unit vectors XI, YI, Z--Idefine the principle axes following

the first rotation. The "roll" angle p necessary to align the Xa-

direction properly is then given by

cosp =_x l • ._

0\_ p \_- 360
_1 x U_R) z_l

: i(Xl × I

_5.5-s)

(5.5-9)

( 5.5-10).

(5.5-11)

(5.5-12)

5.5-3



The LIB_ matrix is then given by

IB2 -sin f

COS

0 O]0

!

(_.5-8)

5.5-4



5.6 Time Systems

5.6.1 Introduction

The measure of time is a deceptively complex problem. Histori-

cally time measurements were based on the annual movement of planets

about the sun or the daily rotation of the earth on its axis. Because

of irregularities in these motions, these systems lead to non-uniform

definitions of time. The desire to identify a uniform standard of

time led to the use of high frequency atomic oscillatlons as the time

standard. The other time systems are then related to this time refer-

ence. Thus the movement of time is considered uniform and the (irregular)

motion of the earth is referenced to this uniform time standard.

Thus the standard time reference for the GMAS will be the atomic

time system A.I defined below. Other time systems will be used, however,

including the ephemeris time system ET for the solar�lunar/planetary

ephemerides, the universal time coordinated system UTC for tracking

data, and universal time UTI for computing Greenwich sideral time.

Brief descriptions of various time systems and terms used in GMAS

will be given in this section, most of which are taken directly from

Reference 5-I. Section 5.6.2 addresses the uniform time systems of

atomic and ephemeris times. Section 5.6.3 summarizes the universal

time systems that relate the orientation of the earth to the vernal

equinox. Section 5.6.4 wi?l smmnsrize the calendar date and Julian

date conversions.

5.6-1



5.6.2 Standard Time Units

To eliminate the nonuniform time units discussed above, uniform

time standards have been adopted. The two most common systems are

atomic time and ephemeris time.

Atomic Time A.I

A.I time is one of several types of atomic time. It Is obtained

from oscillations of the US Cesium Frequency Standard located st

Boulder, Colorado. In 1958, the US Naval Observatory established the

A.I system based on an assumed frequency of 9,192,631,770 oscillations

of the isotope 133 of cesium atom per A.I second. The reference epoch

ohomo sof A.I was established so that on January I, 1958, UT2 the value

of A.I was ohom0 s, January i, 1958.

Ephemeris Time ET

This is the uniform measure of time, which is the independent

variable of the equations of motion, and the argument for the ephem-

erldes of the planets, the moon, and the satellite, The unit of ET

is the ephemeris second, which is defined as the fraction 1/31,556,925.9747

of the tropical year for 12h ET of Jan Od, 1900. Ephemeris time is deter-

mined from the instant near the beginning of the calendar year 1900 when

the geometric mean longitude of the sun, LM, was 279 h 41m 48.s04 at which

instant the measure of ephemeris time was 1900 Jan 0d 12 h.

For most purposes, the difference between A.I and ETmay be con-

sidered a constant. The suspected discrepancy is roughly two parts in

109 . The actual transformation between A.I and ET time is given by

(zz- A.I)= A T (Jr- 2,436,204,5)(86,400)
1958" 9,192,631,770 x _fcesium

where

+ 2 : I/2sinz
2

C

(5.6-l)
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T1958 - the ET - UT2 on Ol January 1958, ohomoS UT2 minus the

periodic term in Equation (5.6-1) evaluated at this

same epoch.

JD - the Julian date.

2,436,204.5 - the Julian date on 01 January 1958, ohom0 s.

_fceslum " the correction to fceslum 9,192,631,770 cycles of

cesium per ephemeris second.

_- the gravitational constant of the sun,

i0 II1.327, 154,45 x km3/sec 2.

a - the semimaJor axis of the heliocentric orbit of the

earth-moon barycenter, 149,599,000 km.

• - the eccentricity of the heliocentric orbit of the

earth-moon barycenter .01672.

c - the speed of light st an infinite distance from the
s

sun, 299,792.5 km/sec.

E - the eccentric anomaly of the heliocentric orbit of

the earth-moon barycenter.

The first term of Equation (5.6-I) arises since A.I was set equal to

UT2 at the beginning of 1958. The second term accounts for the dif-

ference between the lengths of ET and A.I seconds (if _fcesium is

nonzero). The periodic term arises from general relativity. It

accounts for the fact that A.I, UTC, and ST time is a measure of

proper time observed on earth, and that ET is a measure of coordinate

time in the heliocentric (strictly barycentric) space-tlme frame of

reference. The contribution of the last two terms in Equation (5.6-I)

is negligible for the range of applications currently contemplated for

the GTDS program. Hence, the transformation 5etween ET and A.I is

accomplished using the approximate formula,

ET - A.I = 32 s15 (5.6-2)

5.6.2 Universal Time Systems

Universal time systems are used to determine the orientation

of the earth relative to the vernal equinox at a specific instant.

>
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In essence universal time is a measure of the angle between the Greenwich

meridian and the sun at some instant with 12 h UT corresponding to the

sun directly overhead. Because the rotation of the earth is irregular,

the relations between uniform time and universal time are somewhat com-

plicated and generally must be determined after the fact by observation.

This irregularity is quite small and can generally be ignored in most

mission analysis problems. However, in precise satellite tracking (where

minor anomalies in the orbit are used to determine the parameters of the

orbit, dynamic model, or measurement model) these rotational irregulsrlties

must be considered.

The differences between the universal time systems are essentially

related to the manner in which the universal time is computed. The pri-

mary universal time systems are the universal time coordinated system

" (UTC) for the tracking data and the universal time UT1 for computing

exact Greenwich sideral time. In practice, _MAS will determine the

actual corrections from the time difference data A.I-UTC and A.I-UTI

supplied by the U.S. Naval Observatory.

form

These data are supplied in the

T T 2

(A.I - UTC) i ffiall _ + ai2 + ai3 (5.6-3)

T 2
+

(A.I - UTI)I - ai4 + ai5T + ai6 (5.6-4)

where

A.1-UTC - the difference between A.1 and UTC time, in seconds.

A.I-UTI - the difference between A.I end UTI time, in seconds.

T - the number of days from the beginning of the time

span covered by the polynomial, T = 1, 2, . . .

i - the index of the time span.

The coefflclents:ai_ ere given in Table 5.6=I, next to Modified Julian

dates (mod 2,430,000) defining the time interval for which the coeffi-

cients are applicable. The table covers the time span from

5.6-4
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Table 5.6-1. 'l'in_c l)iffcl_nco Coefficients

0

[ T _.,,,,,,ro. 1 """_
GR! (+_}fIIA_l JLJt Io',N

OI, dtll |_,J_ £;04 0 151ilOD J1 0 01,t,.,[In O3

0111£1 |_:'.8 _Z t 9 O. t I;_51 _ 01 O 9,10_ ID 01

011:_+,_ t'J'+': 'la_ 4d 0 5(_ I _(_ O I Q d _,1._O O)

02 "?oi 19'_B 5754 0 UI_,I4|I OI 0 H _JtlU 03

O_/10" I .q_-,O 0303 O, 14..h_ t D O0 0 84_1_11 03

• OSIJI118'.AI 63_4 U+1921.5D O0 O bt,4,et.Q O3

OC,J I_119:.1_ $3_ 0 2_ J.!10 O0 G g.k_:J_D _U)
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January I, 1958, and is updated once every month as current data from

the U.S. Naval Observatory becomes available. The last row of coeffi-

cients in the table is used to obtain extrapolated values of the time-

differences for a short time in the future. The table is used by

finding the value of i such that the given date, MJDj, is in the range

MJD i _ HJDj <MJDi+ 1

The argument of interpolation, T, is then computed from,

T = MJDj - MJDi + I (5.6-5)

Having given the computational transformations, we now proceed to give

the rather lengthy definitions of the universal time systems.

Standard Universal Time, UT

This is the measure of time that is the theoretical basis for

all civil time keeping. UT is related to the rotation of the earth

on its axis. Compared to ephemeris time, which is uniform time, UT

does not take into account the irregularities of the earth's rate of

rotation.

The quantity UT is defined as 12 hours plus the Greenwich Hour

Angle (GHA) of a point (representing a fictitious mean sun) on the mean

equator of epoch whose right ascension measured from the mean equinox

of epoch is

R =' 18 h 38 m 45s836 + 8,640,184s542 T + s0929 T2 (5.6-6)
u u u

where T is defined as the number of Julian centuries elapsed from 12h

UTI January 0, 1900 (JD = 2415020.0) to the UTI time of epoch.

The Greenwich hour angle of this point, denoted by a
s

Figure 5.6-1 is

in

s _GM RM (5.6-7)

where _GM is the Greenwich mean sideral time; hence,
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UT " 1 2a _ '_u._* - R,.,. (5.6-8)

NORTH CELESTIAL POLE

t
Oh RIGHI- i PRIME

ASCENSION / MERIDIAN

CIRCLE _"'_. NWICH

}r - Ru ""_' ._ ',, MG
MEAN EQUINOX
OF DATE Su .

FICTICIOUS MEAN SUN

Figure 5.6-1. Greenwich Hour Angle

The practical determination of UT is obtained from meridian transits

of stars by the U.S. Naval Observatory. At the instant of observation,

the right ascension of the observing station is equal to the observed

star, relative to the true equator and equinox of date. Subtracting

the cast longitude of the observing station gives the true Greenwich

_g , is also thesidereal time, at the instant of observation. _g

Greenwich Hour Angle of the true equinox of date. Subtracting the

nutation In right ascension gives the Green_;ich Mean Sidereal Time,

O(GM or GMST. b_ is then determined from the above equation (5.6-8).

Uncorrected Universal Time_ UTO

This measure of time is obtained from UT by assuming a nominal

value of the longitude of each observing station. The resulting UT

is labeled trrO. Actual determination of tyro is done by an instrument

located at an observatory whose adopted conventional longitude is _A.

When the longitude - _A is added to the observed _ocal hour angle of

the point $u' (See Figure 5.6-I), whose right ascension measured from

the mean equator and equinox of date is Ru, then tyro is obtained (See

Figure 5.6-2).

U T 0 = 12h - )kA + LRA o f Su. (5.6-9)
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Figure 5.6-2. Universal Time References

Universal Time, UTI

This measure of time is defined in terms of UTO by applying an

appropriate correction in longitude due to the motion of the pole. UTI

reflects the actual orientation of the earth with respect to the vernal

equinox at that instant. UTI will be the same for all observatories.

In contrast, UTO time, as determined by different observatories using

their adopted longitude in calculations, results in a different value

of UTO for each observatory.

Then

UTI = UTO -

AX = tan _A _XP sin _A + Y p

(5.6-10)

cos (5.6-11)

where _A and _A are the adopted longitude _,nd latitude and Xp, Yp

represent the polar motion (See Section 5.3.5). UTI time is caused by

GTDS to compute the aGM as given in Equation (5.3-14).

Universal Time, UT2

If the extrapolated value of UTI time is corrected for periodic

seasonal variations, SV, in the earth's speed of rotation, the result-

ing time is UT2. UT2 does not represent the actual orientation of the

earth with respect to the vernal equinox. UTI should always be used

when the actual orientation of the earth is required. UT2 is often

referred to as GMT, Greenwich Mean Time, and ZULU time. The equations

for UT2 are

/" L
jl



where

or

UT2 = UT1 + SV (5.6-12)

SV = _022 sin 2 t - _017 cos 2 t - _007 sin 4 t + _006 cos 4 t

(5.6-13)

sv= _022sin2 t - _012cos2 t - _006sin4 t + _007cos4 t

(5.6-14)

Equation (5.6-13) was used prior to 1962 and Equation (5.6-14)

has been in use since 1962. The quantity t equals the fraction of the

tropical year elapsed from the beginning of the Bessellan year for which

the calculation is made. (One tropical year - 365.2422 days.) Since

seasonal variations can be known precisely only after their occurrence,

UT2 itself is rarely used. The Bureau International de l'Heure also

issues corrections for and SV.

Universal Time Coordinated I UTC

This is the standard time scale to which tracking stations are

synchronized. UTC time is derived from atomic time, A.I, in a manner

which makes it almost synchronous with Earth-rotation-derlved time.

Up to January i, 1972, the UTC time scale operated at a frequency

offset from the atomic time scale. The value of the offset was period-

ically changed by international agreement so that the UTC scale would

correspond more closely to time derived from the rotation of the Earth.

On January i, 1972, a new improved UTC system, adopted by the

International Radio Consultative Committee (CCIR), was internationally

implemented by the tlme-keeplng laboratories and tlme-broadcast stations

(References I0 and II).

The new UTC system eliminates the frequency offset from atomic

tlme, thus making the UTC second constant and equal in duration to the

A.I second. The new UTC time scale xs now kept in synchronism with the

rotation of the earth to within _ 0.7 second by step-tlme adjustments

of exactly one second, when needed.
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6. State and State Transition Matrix Propagation

6.1 Introduction

This chapter will be devoted to the description and definition of

the dynamical models of spacecraft accelerations, the mathematical formu-

lation describing those models and the numerical or analytical techniques

used for solving those equations. GMAS will include the capability for

low, medium and high precision propagation but will access GTDS for the

latter capability.

The GMAS will be capable of simulating the motion of one or two ve-

hicles moving under some or all of the accelerations due to a non-spherlcal

central body, n-point masses, atmospheric drag, solar radiation pressure,

attitude control system corrections and finite thrust. The central body

asphericity will be modeled using the standard expansion Jn Legendre

polynomials. Drag calculations will include the vehicle c:_aracteristics

as modeled by effective cross-sectional area and drag coefficient and the

atmosphere as defined by a fairly accurate model such as the modified

Harris-Priester. Solar radiation pressure will include the vehicle char-

acteristics includlng luminosity, distance, and shadowing. The attitude

control system effects and finite thrust models will include polynomial

expansions for the accelerations.

(IMAS will include the capability to propagate the versicle trajecto-

ries at three levels of precision. The low level precision formulation

will be two-body motion and the Brouwer-Lyddane formulation. The medium

precision formulation will include both analytic and numerical averaging

techniques. To take advantage of existing capability, GMAS will be de-

signed to access the high precision propagation techniques available in

the GTDS.

All the propagators developed for GMAS will be built with complete

modularity to allow any combination of the models included, the mathe-

matlcal formulation, and the numerical a,:heme desired by :he user. Pre-

vlous studies have shown this can be done very efficiently.
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6.2 Dynamical Models

The state of a spacecraft is a function of the many accelerations

acting upon it. Some of these accelerations are due tc the physical

characteristics of the solar system, while others are generated by

spacecraft systems. The dynamics of the situation are expressed by the

equations of motion which provide the relationship between the space-

craft state at any instant and the state at the initial epoch. This

section identifies the various sources of acceleration and gives the

appropriate mathenL_tical representation. The accelerations which are

considered include:

i) the gravitational acceleration due to n-point masses,

2) the acceleration due to the central body gravity harmonics,

3) the acceleration due to atmospheric drag,

4) the acceleration due to solar radiation pressure,

5) the acceleration due to thrust.

6.2.1 N-Body Gravity Contribution

The equation of motion in an inertial frame of reference for a

spacecraft of negligible mass under the influence of n-point masses is

given by the summation of accelerations due to the point masses

_=_ _. 9--i-k -
k=l _p Rkp

where _ is the spacecraft position vector in the inertial frame, _k is

the product of the universal gravitational constant and the mass of the

is the vector from the kth body to the spacecraft (_pkth body, and _p..

denotes the magnitude of _p).

It is normally more convenient to reference the motion of the space-

craft to one of the massive bodies. The equation of motzon referenced to

thlsr"central" body is in an accelerated frame of reference and is given

f
q

bV:

6.2-I



m

where _ is the vector from the central body to the kth body and R is

from the central body to the spacecraft.

In one case of practical application it is sometimes _ecessary to

add an additional term to equation 6.2-2. This is the case of an orbit

referenced to the Earth's moon where the indirect effect of the nonspher-

icity of the Earth on the lunar ephemeris is large enough to have an

effect.

6.2.2 Gravitational Harmonics

The determination of the acceleration due to the nonsphericity of

the central body is a classical problem and is well treated in the litera-

ture. A summary of the required mathematical formulae will be given

below.

The central body gravity field is represented by a potential func-

tion which is an infinite sum of spherical harmonics. The sum is nor-

mally truncated ac some appropriate level. The potential function is

given in equation (6-3).

t, /_ _ C ° p.¢(r ,¢,;_) -" _- n (si.¢j
F I '*

I: -|

lo.2-3)

__ ,_ (siUq) [S'",, si._n\ _ . costa

i* • | J:i_ |

whe re

+_ .,. the g-ravitation:d parameter of the central body

,'Ip '_. the r:ulius of tho body (usually taken as the equatorial radius)

P,_ -,- the nssocinted l,egendre function

S'. C" _ harmonic coefficients.
n t%

The term n = 1 is usually not present when the origin of the coordinate

system is placed at the center of mass.

The accelerations due to the nonspherical portion of this potential

are obtained in the body-fixed, true of date coordinate system shown in

Figure 6.2-1, where the coordinate directions are defined as foll_s:
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Yb

x b axis lies along the intersection of the central body's equatorial plane
and the plane of the prime merdian

z b axis lies alon_; the a×is to the adopted North Pole

axis completes a right-handed coordinate system.

21_e acceleration chin to nonsphericity in this eoordirmte system may be obtained

as a vector r b with cumponcnts .Xb, Yb, m_d _b where

r -- -- -- "_'YD

× Y

Figure 6.2-I. Body Fixed System

The partial derivatives of the nonspherical portion of the potential with respect

to r, ,[,, and k are given by

, (,,:_),,Z" I .-

l)r r .. :,,=o (b.2-5)

n=2 m_O

•.-b@_ (_0 .?(S: cos niX. - C m Sin re.k) pm (sin c4).
,_=2 _.=0
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The Legendre functions and the terms cos mA, sin reX: and m tan_ are

computed via recursion formulae:

P°(sin4) : [(2n- 1) si, i P ° (sin¢)-(n- 1)P ° (sinq.)]/n (6.2-6)n n-I n-2

P,_ (sine) = P_",,..2 (st,,_.) 4 (-On - 1) cos_P,_-] (sine)

P"-I (si. _) m _' O. m - nP" (sine) = (2,1- 1) cos ;
II II --

m/O, m<n (6.2-7)

(6.2-8)

who re

po (si, _) : 1, P_ (_in ¢) = sin _, p', (sin ¢) = cos t6.2-9)

#

sii_m>. = 2 cos h sin(m- 1),\ - sin (m- 2).k

(6.2-10)

cos .n_, : 2 cos ,\ cos (m- 1),\ - cos (m" 2) _.

nl l :111 ,,' [(m- I) tan,,')], tan4_.
(6.2-11.)

q'ht; partial derivatives of r, ,_, and X with respect to xu, Yb, a.a(t z,. are COmlmied

from the expre:_._ions
.-=T

_r I b

- (o.2-t?)
.

rb r

-_ zbTV ;_z,, 7
L r2 + b_,J (0.2-13)

whe re

.)x____b.]
_Y._b- Yb

x b ,%- _r d
( o .-"- IA)

aX b 3Y h 3Z b

3r b 3r b aT b

(6.2-15)

are the row vectors (1, O, 0), (0, 1, 0), and (0, O, 1), respectively.
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Substituting equations (6.2-12) through (6.2-14) intc (6.2-4) yields

Y:,

_;b 3'; z t, 1= y + x (6.2-16)

I, = Or-_ Zh ¢
r 2 0¢

The numerical computations related to spacecraft orbits are normally

made in an inertial frame of reference (e.g. mean equator and equinox of

1950.0) so that the appropriate rotation of the acceleration vector from

the body-fixed, true of date system must be made. This is discussed in

Chapter 5.

The formulation given in equations (6.2-3) through tb.2-16) is taken

from reference 6.1 and is necessary when the spacecraft orbit is being

integrated in a Cartesian formulation; on the other hand, if a variatLoll

of parameters (VOP) formulation is being used, the planetary equations

which express the rate of change of the Keplerian elements are given in

terms of partials of the potential with respect to the elements. The

potential must thus be expressed in terms of the elements.

In terms of Kepler elements, the equations of motion are:

da 2 _ ,

dt na aM

de = l-e= 3_ ._ l'ez_z/2 "9_' ' (6-16a) (b 2-17)

dt naZe _H :nale 3w

"' 1/'2

dw = cos i _ + (l-e).' 3_

dt nai(l-eZ)i'l:sin i _i na2e _e
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di cos i _e I _

I 1 , |., ), __ _ i .dt na=(l-e 2 */=sin i _ naZ(l-e2)*/Zsin i 3_

dfl = I _ , (b.z-t8)

dt na*(l-e) */z sin i _i

dM l-e* a¢. 2 __

dt na=e _e na _a

where # is the disturbing (non two-body) part of the potential. The ex-

pansion of the disturbin B potentials (_H and ¢TB for gravitational har-

monics and third body perturbations respectively) in terms of the Kepler

elements of the spacecraft, the angular position of the Earth and the

Kepler elements of the Sun and Moon are given by Kaula (reference 6.2)

as

¢=2 m=o

_a---s---e_ F_kp(1)

a
p=o

(0.2-19)

S_mpq =
cos

sin

C .

t - m even

C.-m odd

/

4

(_-W, * q) :_* = (n- e)
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)@ where

&
e

r

I

C

g

a g

e =

£ =

M =

8 =

earth gravitational constant

earth equatorialradius

radial distance to vehicle

s_.ni-major axis

eccentricity

inclination

mean _nomal'y

argument of perigee

risht ascension or _sccnding node

ri6ht ascension of Greenwich

O_pq(e) _nd F&v,p(i) are functions arisinz from the l[armonic

of _he potential field and transformation to [unctions o_ Kepler olc_cnt_.

Both --G2pq(e)and F_p(i) are available as computer subroutines.
%

The third body disturbinz function is give. by

. 2 2
¢_2 = _ a__. v-_ K _(2-n)l*3 rnmp(i)

m=O

/

_0

h=o q="

") .(b. ---0_

L onhj (e*)co_[2-2p)_. (2- _ +q)s- (2-2h)J
J=_

- (a- 2h j),_+ =(a _)]

where a "star"refers to the Kepler elex,ent of the disturbLu Z body.
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0

R =1
1

R =2 "m#o
m

H (e) is available as part of the computer subroutlne which calcu-
npq

fates G_pq(e).

6.2.3 Atmospheric Drag

One of the more complfcated forces acting on the satellite is

aerodynamic drag. The complications arise because of the presence in

the mathematical model of the atmospheric density, a parameter whose

properties and characteristics are not well known. The model for this

force is only as good as the model for the atmospheric density and if

consideration is given to the hourly, daily, monthly, and even yearly

variations of atmospheric constituents, then the complexity begins to

become more evident.

The braking effect of this force is characterized by a deceleration

of the satellite which, in turn, tends to secularly decrease the energy

and lower the altitude.

The direction of the force is opposite to the direc_lon of motion

and is dependent upon the shape, size, orientation and velocity of the

satellite as well as the density of the atmosphere. The atmosphere is

rotating; consequently, the velocity referred to above is not the iner-

tial velocity of the satellite but rather the velocity =elative to the

rotating atmosphere. The consequence of using a rotating atmosphere is

that the force is no longer in the plane of undisturbed motion.

The force is defined in terms of these factors to be

- ACu
P VR_ L VR_.2

(6.2-21)

where

A _ tile effective cross-sectional area

C D _ tile aerodynamic drag coefficient

P > the density of the atmosphere

VRm" "- the velocity vector of the satellite rel,_tive to the atmosphere.
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In the 1950.0 coordinate system, the relative velocity vector is given

by

VRgL = R - (_x R) (6.2-22)

where

_ the angular rotation vector of the earth expressed in 10,50.0 coordinates

R, R "_tileearth-centered 1950.0 position and velocity vectors of tilesatellite.

The required acceleration is given by

-. -CDA

RD - 2,.0 : Vm:L V_t:L (b.2-23)

where m is the mass of the spacecraft.
o

are taken from reference 6.1.

Equations (6.2-21) through (b.'2-'23)

6.2.4 Solar Radiation Pressure

The force due to solar radiation pressure on a ,_ehicle's surface

is proportional to the effective area A of the surface normal to the in-

cident radiation, to the surface reflectivity, _, to the luminosity, Ls,

of the Sun, and inversely proportional to the square of the distance R
VS

from the Sun, and to the speed of light, c.

The magnitude of the force due to direct solar radiation pressure

on an area A is therefore given by

LsTA
F=

4,R 2 c
_, (6.2-24)

where 7 = 1 + W (e.g. y= 1.95 for nluminunO (b.2-25)

The magnitude of the acceleration on a spacecraft of mass, mo, and

area, A, due to direct solar radiation pressure at one astronomical unit

from the Sun is

F S 7A
-- = _ __ (6.2-26)
m 0 c m0
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where S denotes the mean solar flux at one astronomical unit. The quan-

, are grouped together since they are spacecraft proper-tities Y A and m °

ties and can be determined prior to flight. The magnitude of the accel-

eration on a spacecraft due to direct solar radiation at the actual dis-

tance Rvs from the Sun is given by

F S R2• -,, TA

mo = R2 mo
¥11

(6.2-27)

O

where Run designates one astronomical unit, i.e., the semimajor axis of

the Earth's orbit.

All of the above factors except R are constant for a given space-
vs

craft and mission. For computational convenience, P replaces S/c. P
s s

is defined as the force on a perfectly absorbing surface (7 = 0) due to

solar radiation pressure at one astronomical unit.

The acceleration due to direct solar radiation is away from the Sun;

that is, in the direction of

where

= R - R (6.2-28)
VS S

_ the position vector of the vehicle in the inertial mean

of 1950.0 coordinate system

_ the position vector of the Sun in the inertial mean of
s

1950.0 coordinate system.

The model for the acceleration _R due to direct solar radiation is

Rs R = _,p R2 "_A R
$ SU_

mo R 3
¥I

(b.2-29)

where

0 if the satellite is in shadow (umbra)

- eclipse factor such that = I if the satellite is in sunlight and

0<v<l if the satellite is in penumbra.

Equations (6.2-24) through (6.2-29) are taken from reference b.l.
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6.2.5 Finite Thrust

The model used to describe the spacecraft acceleration during

propulsive maneuvers is an empirical representation based on the re-

duction of data taken during the motor burn testing procedures. It is

represented in an inertial true of date systems as

r T aiu(t -T0) -u(t - Tf)) U I

where

a _ the mngnitudc of ths thrust acceleration

(b. 2-30)

U r ",- the divecti_m of ihc thrust acceleration

T 0 "_ the t:ffoc[ive hdtiation time of the motor burn (ET)

and

Tf _ the effective tcrminntion time of the motor burn (E'F)

u(t-_') =: I l'
t >.,r

0, t<_

The motor's effective burn time is

_b.2-3t)

T u = T f - T0.

The propulsive acceleration is modeled as follows

(b..-3.)

fl u il) + a I T + ;;2 T 2 + 33 r 3 + "14 _4

where T = t - T
O

Equation (6.2-33) characterizes the thzust acceleration as

polynomial in T, the time from effective thrust initlatlo_,

the effective thrust to mass ratio as a function of time.

(0.2-33_

_b.2-34)

a fourth degree

to represent

The unit vector U T

thrust axis direction.

U T =

where

"T

is assumed to be directed along the spacecraft's

The true epoch components of the thrust axis are

cos a T COS _T

S _tl a T COS ¢ST

si. S
T

_. the right ascension of the spacecraft's thrust axis relative to the

true cquinox and cquv.tor of epoch

(b.2-35)

_T _- the declination of the spacecrafUs thrust axis relative to the true

equinox and cquntur of epoch.
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The thrust axis orientation is also represented by fourth-degree poly-

nomial s in

_r _ _0 F ,iIT ÷ Ct2T2 ._ct3"r3 _ _t4r4 (6.2-36)

• ,4
CT :0 + "itz J +_2r2 + "_sT3 + +4 (6.2-37)

The thrust acceleration is expressed in the true earth equator and equi-

nox of epoch coordinate system (via the unit vector UT). This is then

rotated to the inertial mean equinox and equator of 1950.0. Equations

(5.2-30) through (6.2-37) are taken from reference 5-i.

O
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6.3 Low Precision Propagation

Many of the functions of GMAS such as mission assessment and profilt_

generation, maneuver analysis and error analysis will require the availa-

bility of extremely fast propagation methods. A consequence of the fast

computation time will be low precision, since analytic techniques cannot

include a complicated force model. Two basic analytic methods will be

sufficient for most applications. The salient equations for a very ef-

ficient formulation of basic two body motion by Goodyear (Reference 6.3)

and the Brouwer-Lyddane theory (Reference 6.4) which includes effects

of the first few zonal harmonics will be given below.

6.3.1 Two Body Motion

The Goodyear formulation of the two body problem uses a change of

variables that permits a very concise set o£ equations to be used that

are the same whether the motion is hyperbolic, parabolic or elliptic. A

consequence of this is the introduction of several new transcendental

functions replacing the standard trigonometric and hyperbolic functions.

With this formulation, the propagation of a two body orbit is accom-

plished very quickly.

The change of variables is made by defining

= i/r (6.3-1)

which leads to the relationship of _ to the eccentric (E) and hyperbolic

(F) anomalies in standard two body formulations as

E-Eo F-Fo

= V_a =Vf--_aa (6.3-2)

The equations necessary for propagating a two body orbit as taken

from reference 6.3 are given below_ where r and r are the position and
O O

velocity at time to and r and r are the position and velocity at time t

and the gravitational parameter is _. First

-- _ (6.3-3)

_0 " tO" rO

• - _0.'_0- Z _ /r 0
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_re deterzzuned. Then the parameter _ and its .transcendental functions

¢2/2 az _4 3 ¢6/6 t
s 0 = I + a I + /41 ÷ a ÷ ....

• l* t +a _3/31 + a z _SlS1+ a3 t71v:+ ....

= 2 3
s Z _Z/ZI + a _4/4] + a _6/61 + a _8/81 +

s 3 = ¢3/31 + a @5/51 + a ?" @7/'71 ÷ a 3 @9/91 +

(6.3-_)

are obtained by solving the equation

t = to + r0s I +

for _ . Then

_0 sZ ÷ P s3
(6.3-s)

and

r : r0s 0 + o'0 s I ÷ p s 2

t = I - p szlr 0 i = (t - t o )-

0

= - pst/(r r 0) g • I -

give the final solution (or the coordinates.

r = t to÷ gr 0

(6.3-0)

(6.3-7)

(6.3-8)

The state transition matrices are given in terms of the

initial and final coordinates and the Inicisl and final accelerations.

The auxiliary parameter U is defined In terms of two additional trans-

cendental functions S4 and S5 where

where

U " S2(t-to) +2/_(_$4-3S5)
(6.3-9)

s 4 = @4141 + a# 616! + aZ _818 ! + a3

• Z a3s5 $ 5/51 + a _)7/7! +a ¢ ?/71 +

10
/I01 + .... (6.3-10)

111111 + ... (6.3-11)

Thestate transition matrices are given on the following page.
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J

r+ o.+.,o +. Iioil jYlax 0 8Y/aY 0 ay/aZol = f + U o Yo £o

La,l% a=/ay 0 azlazoj o

Ii =/_o ax/aYo

TI a_o ey/a,_o
=la_ o az/a_ o

st + (f-l)Ir0

ro

(f-l) s 1

-fs,

_J ax 0 a _/ay o 87¢/aZo]_/% a_/_o a_la=ol
Lal/a% a_./ayo o;/a %j

Ii ?,l a_o a_.la_.o

I a_o a_-Iai o
a_o a_./a/o

(6.3-t2)

[:°,°,°elo _o

'E;jUf-_'z g'z J

[i°il Ii]E= i + u _o _o
0

-il'o l l
-- + -_ +-E-)
r r 0 r r 0

s I + l(-l)/r 0

_ r 0

i "z + (_-z)/_-
r

fs 2

(6.3-13)

ixo.,o:o-I
Xo YO =OJ

,j
(6.3-14)

_,+:oi=
a_.l Zoj o

" r r 0 YO

i ,,_ 1_-z_"z L=o,o

(6.3-t5)

:ol.,
=o.]
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are

The partials with respect to

given by

the gravitational constant

y/a_ =

=/ U/r 0 - s3

(6.3-16)

_ _1 r -'l/or r°_'_

_ .;j /'_-"o i; L U/'o- "3J (6. }-17)
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6.3.2 Brouwer-Lyddane

The Brouwer theory for the motion of a satellite moving around a

central body including Lhe effect of the first five zonal harmonics

develops the solution in canonical variables using the von Zeipel method.

It is applicable to elliptical drag-free orbits but has singularities for

zero eccentricity and inclination and the critical inclination of 63 ° 26'.

Lyddane improved upon the Brouwer theory by obtaining improved algorithms

applicable for zero eccentricity and inclination. This section presents

the equations required for the Brouwer-Lyddane formulation.

In these formulas, the osculating orbit is divided into secular

terms and long and short period periodic terms. Delaunay variable notation

is used, i.e.,

1 'o ,m M"

g" = _,,

h" = .Q"

(b.3-9)

O The double prime will be used on s variable to indicate secular or mean

motion, single prine will indicate secular plus long period terms, and

unprlmed variables will include all effects and are used for the osculat-

ing elements. The semi-major axis, eccentricity and inclination, will be

represented by a, e, and i, respectively. The radius of the central body

is given by R
e"

Pro_aLi_ only secular terms to Ume t yLelds

_'= a_

_'_ e:

Z"- .._t + ._m;

(6.3-10)

• /
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where

and the abbrcviaticas arc

(6.3-11)

= ,

R'#

(6.3-12)

Note that the secular terms depe_d only on the second and fourth harmo_cs,

_ _ _.
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The mean value of the eccentric anomaly, E", is obtained

lteratively from Kepler's equation

II II F..., II OIlE - _ si_ . ,_. (6.3-13)

The mean true anomaly, _', mean radial distance, r", and the dilfere_tlalof

the mean semlmajor axis with respect to the mean radial distance, da"/dr", are
.

(6.3..14)

N "r _" (J e" (6.3-is)- - cos E')

cl_" i

dr''_ " (I- e"¢o, {') (6.3-16)

Since the peztodtc term._ are Bomewhat lengthy, the following

abbreviations are introduced to shorten the computations.

,,Z 4 t

A_'.-I _ A_I . (se. ÷ z)8 A,
.L I,, 0 6^,,. e

#

AC" BO_+ Be"K A,s " e'A,
#

A4" 0 - 3_C) All" i+--_"

As" A_CI-gA_.) AIQ.- Ca+e.) .;n_."
I "I( •

A," A_Y_*si. z" Az_- e"A_o

A,_" 7.+ e A¢_" A,,÷ 7-
I_IL _

k.= _e. + z At;- I(,A,s+ 40 A,,+ 3

AL_= A. e _" A=." _ A=,(II+ zoo A_÷ _o A,_)

0.3 -7
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and

The following Formulas give the osculating elemen_.s at time t.

._mim.ajor Axi s

_¢ • e _--- +_ecos_ +a cos F ))
(6.3-19)
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Eccentricity

_t C m

a

I_ cos z_°+ ' B_+,s;w _'-'B_s s;,_ S_"
C6.3-20)

_e

• - - _.O-o ) cosCz_+z.f" ")(_e"c0.'÷+' 3cos_'.+._osS++'.+e_')

_.._,_+.--,_[o_-£++_,o.'r+,,o,+'++",o,'+"]}
(6.3..21)

•e'$_t - B+ si_ z_'. Bs cos_". + 86cos_"
3 ' "+, 2do_ __,3e-,_[_C_-.)+ do.'_+_ ,,{_ _. +, ] ++,,.r

+ +O-+')F{-_'rd--_- ++" +)++-(_+'+ +')

+(,_,(_'f a_.' ,+.,-,._...+.+).++,__.++'_..,.+.,)]}

(6.3-22)

(6.3-23)

Inclination

+:,C_",o,¢,_'++"_+c°,,_,_:'_+_">)]
-+ [B,,°,.+'+++.+,,,,++"-,+,,,,_+:,."]

(6,3-2&)

. /
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r

' [- _-i"z8 s_.z" 6 (_"siv, f"-£'+ D")2.

- s(_;.(2_'+z:)+ e'_,'_Of+V')). (6.3-25)

Mean Anomalv_ ._ , A}-g_ment of Perigee, _, ;tndRight Ascension of Ascendin]_Node1"_

(6.3-27)

(6.3-28)

• .j'e"_2 co_ "+ (e"+ fe )#r.£" ,_ e_o

_- o i_ e=o

_.-_';"lco_W[_.__o,(_)+• _. , __ , ._,_(%)]-_,.,(_)s__,-_ J

(6.3-29)

(6.3-30)

(6.3-31)
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The eccentric anomaly is iteratlvelydetermined from Kepler's equation

E - _. _fn E - _. (6.3-32)

The true anomaly and radial distance are

.f =, ._a_ir.._ s,nE]
• L COS E --l'el

(6.3-33)

r = o. (i- @cos p_) (6.3-34)

The .Brouwer-Lyddane theory was developed for drag-free orbits

However, th,_primary influence of drag on high altitude, small eccentricity

orbits is to cause a secular effectin the mean anomaly. The effect is relatively

small and noticeable only over a long period of time. Therefore, a firstorder

correction to the mean anomaly Is optionally includod of the form

where

%-o .p.z
m = 0,,1,2.,... _lq

(6.3-35)

N.e11. ""

t%

The col-recti,,nis _pIIed to the mean motion in Equation

Brouwer drag parameters

Brouwer drag parameters reference time

(6.3-I0) as fol].ows

(6.3.,36)



The Brouwer-Lyddane theory, presented previously, requires

the Brouwer mean elements a", e", l", I", g" end h" to commence the pro-

cedure. Usually, hey:seer, the osculating orbital elements no, eo, lo, go

and ho are provided at initial epoch time to.

To transform the osculating elements to mean elements, a

successive approximation scheme is utilized which involves the Brouwer-

Lyddane algoriflun. Given an initial estimate of the mean elements, no" ,

eo"_ . .., he osculating elements at time to are computed from Equations (6.3..10)

thru (6.6-31). If these computed elements differ from the specified oscu-

lating elements no, eo, . . . then the mean elements are differentially correcte,[

by means of a Newton Raphsen successive approximation procedure so as to

cause the computed osculating elements to agree with the a priori specified

elements. To commence the successive approximation procedure, the mean

elements no", eo" , . . . are approximated by the a priori specified osculating

elements ao, eo, .... It should be noted that since At is zero in Equatfon.... (6.6-10)
0

(i.e., t ffi to), the secular terms i, gandh in Equation (6.3-11) need not be

calcu1_ _edo-- :

J



6.4 Medium Precision Propagation

Since almos_ every type of mission considered at GSFC requires pre-

mission analysis for long periods of time (i.e., months or years) full

high precision integration of the equation of motion is on:enable. A

method of approximating the motion while retaining the impgrtant long

term characteristics must be used. The method used in various forms in-

volves the use of averaged equations of motion.

Ln general, averaged equations of motion are useful only when the

dominant characteristic of the motion is periodicity and all perturbative

forces have characteristic frequencies significantly lower than that of

the basic motion. Thus, the motion of a satellite whose basic orbit is

elliptical about a central body can _e investigated with averaging tech-

niques, _hereas the motion of a probe traveling on a hyperbola departing

or arriving at a planet or on an arc of an heliocentric conic cannot be

usefully investisated with these techniques.

The basis for averaging is the technique of variation of parameters

(VOP)• The VOP technique formulates the equations of motion in terms of

parameters which are constants in the unperturbed problem (i.e., conic

elements). Under the influence of perturbations, these p_rameters will

then be relatively slowly varying functions of tilde. 'i%e VOP formulation

can be used for full high precision integration of the motion since no

approximation is made.

The VOP form of the equations of motion (planetary equatlolls) can

be represented by

= Fi(Ej,t) i = 1,6; j = 1,6 (6.4-t)Ei

where the E. represent some set of six ,>rbital elements. The full form
i

of these equations for the classical orbital elements was given pre-

viously in equations (6.2-17 & 18). The form of the equations for the

set of elements defined by

• 2)p = a(l-e

h = e sin_

k = e cos&;

u=_+f

i= i

(6.4..2)

St=Q

.,f .
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i = _: _ _ .............. _ .......... _ • • •_ .............

is given in reference 6.6 as

_= 2r t_ "

h = -cos(_,+f) R+ I- r • sin(t_,+t) +-_- e sine ,S

r "

-ecose -_" sin(a_+D cotLW

k =

U

r
+-- e sina, sin(a_+_cot! W

P.

- p_-/r _- (r_--p sin (a,+ D cot

0

t = rcosi_+t) W / p_

t /

W

(6.4-3)

where R, S, and W are the c=mponen_s of the inertial perturbing acceler-

ation resolved along the radial, tangential and normal directions.

The general characteristics of the integrals of the above equations

is that they contain short, meditm and long periodic variations as well

as secular variations. The short period variations are of the order of

the orbital period or less and are directly related to the motion of the

spacecraft around a single orbit. The other variations a_e related to

longer frequency parameters affecting the motion such as zhe rotation of

the central body or the motion of third bodies.

The objective of averaging techniques is to remove the short period

variations by transforming the set of ordinary differential equations

describing the o3culating or instantaneous orbital elements to a set of

ordinary differential equations describing the mean values of the ozbital

elements.
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The result of the averaging procedure is that to first order in

the small quantity characterizing the perturbation the se_ of ordinary

differential equations in the mean elements is given by

t+ T/2

=¥I f FiGi-i ,t)dt i = 1,6; J = 1,5 (6.4-4)
t-'r/2

where it should be noted that the orbital elements are treated as cons-

tant at their mean values E.(t) during the averaging integration. The
J

period T must be defined in terms of the mea____nnvalue of the semimaJor

axis at time t. It should also be noted that explicit dependence on the

fast variable E 6 (e.g., true or mean anomaly) has been rzmoved.

There are two methods of performing the averaging quadrature. Ana-

lytic averaging refers to processes in which the integrals i,l (6.4-4) are

taken analytically. One great advantage of analytical averaging is that

when the perturbing forces are derivable frc¢_ a potential then only the

potential need be averaged and not all six force equations as indicated

by(6.4-3). This is valid since the order of the partial differentiation

and the averaging integration may be reversed. The eq_ations given in

section 6.2'2 for the perturbing potential in terms of the Keplerian

elements are written so that the short period contributions may be spe-

clfically excluded.

For perturbations of a complex nature or for time dependent forces

such as atmospheric drag or tesseral harmonics, the averaging in equa-

tion (6.4-4)is most conveniently performed by numerical quadrature.

Reference 6.7 has found for most applications that 6-point Gaussian

quadrature applied to the averaging interval broken intc one to three

subintervals yields excellent accuracy for almost any application.

The principal advantages of analytic averaging are speed and pre-

cision with respect to the a_rased rakes--it should be used whenever

possible. On the other hand, numerical averaging offers high flexi-

bility in perturbation modeling. Although slightly mcxe expensive,

Reference 6.8 indicates that such flexibility is highly desirable and

useful. N_erical averaging also offers the basis for improved averag-

ing schemes_ which are impossible with analytical averaging.
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By whatever method the averaged rates are obtained_ the differen-

tial equations are then solved numericallyusing standard numerical

integration schemes which are discussed in section 6.6. Step sizes on

the order of the orbital period may be used.
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6.5 High Precision Propagation

GMAS will include the capability for high precision propagation

but will access GTDS for this capability. The various propagation op-

tions in this mod_ will include Cowell and VOP formulations of the equa-

tions of motion. The Cowell equations of motion can be integrated with

either a fixed or variable step size with the use of ti_e regularized

variables available for elliptical motion. The VOP formulation can be

in terms of Keplerian or equinoctial elements as well as the Kustaanheimo-

Stiefel set of variables.
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6.6 Integration Methods

The classical integration problem involved in orbital dynamics is

solving the initial value problem specified by

= f(y,y,x)

Y(Xo) = Yo

Y(Xo) = Yo

(6.6-I)

where y and f are three-vectors defining the position and acceleration

respectively of a spacecraft. Defining the six component state vector

WT = (yT, 9T) equation (6.6-1) can be reduced to a class I first order
T

differential equation by deflnlng g = (9, f) and thus

W = g (W, x)

W(x o) = W°

In addition to class-I problems, of frequent interes_ are class

problems whereby the acceleration is a function of only the position

and possibly time (i.e., in equation (6.6-1) _ = f(y,x)). Such problems

occur quite frequently in dynamics and are usually handled by special

class II methods _ lieu of reducing it to a class I problem. Such

methods avoid the artificial introduction of first order derivatives,

which umy not be of interest, and the possible introduction of undesir-

(6.6-z)

able error propagation properties.

Classical class I and II integration methods approximate y at a

sequence of time points (xi = x° + ih i = 1,2,...) where the step-

size h, is assumed to be a constant. An approximate solution at x i is

denoted Yi"

Among the many classical methods available for solving initial

value problems one can distinguish between single-step and multi-step

methods. In a single-step method, the value of Yn+l cen be found if

only Yn is known. In a multl-step method, the calculation of Yn+l

depends on expli=it knowledge of Yn _nd certain "back" _alues Yn-l'

Yn-2"'" A method is called a k-step method if k such back values are

required. Another distinction between these two types of methods is

that in multl-step methods the function f(y,x) is evaluated only at the

points x. whereas most single-step methods require the evaluation of f
1

at intermediate points.
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Although multi-step methods are in general more complex than single-

step methods in that special starting and "memory maintenance" procedures

are required, they offer the advantage of high accuracy at minimum number

of evaluations of f. If this function is very complex, as is frequently

the case, this results in multi-step methods being much mnre efficient

than single-step methods and, therefore, of more general use.

6.6.1 Single-Step Techniques

Single-step integration schemes require the evaluation of the

and
function to be integrated f at intermediate points between xn Xn+ 1.

The equations for the coemonly used four-cycle Runge-Ku_ta technique are

whcre

(6.6-3)

El = hf(X0' V0)

( 1 +IK2 = hi x o_h. Y0 _EI

( i 1K3 = hf X 0+_h, Y0 +o_K 2

K4 = hf (X0+h, Y0+K3 )

The equatione for a seventh-order ten-cycle Runge-Kutta scheme are

given as

whe re

K0 = I-f (X 0' Y0/

1
K1 - hr (xo .,_h, Yo

( ,K 2 = hf X 0 +gh, YO

K3 = hf (X 0

+_'Ko.

+ 1 .,

1

+ 27 °. I¢6)

(6.6-4)
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K7

K 8

1 + 32K, 7K 3K 4 = h f X 0 +_h Y0"° 8:H,_0 :

1 t 241,;,4K 5 = hf X 0 ÷_h, Y0 4 -3K 0 - 4K 2 i K 3

( '[+ lh Y0 + '_:)0K 0 -52 tK._ + 1-I5K 3K 6 = hf X 0 _ , _ .--

1 _og,)K -_ 105K 2 ._ 13K3 318Kihf/X0_ +2h' Y0 4 1-13---_ -- 0 ' -

+753K , 10GK6] _5

(5 1 [14042K0 11012K2 _ 4,177E 3h f X 0+ h, Y0 + 68(;$8 ' "

+ 5724K4 _ 6903K5 + 6'_(;0K6 t. 31.i82K 7 /

K 9 -( ,[hf X 0 +h, Y0 +_ - 20"19K0- l$3t;K.)_ + 839K 3 ÷ 5724K 4

- 4692K5 + 1208iK 6 -95.10K 7 + _81,;K8] )

The above equations are taken from reference 6-9 .

6.6.2 Multi-Step Techniques

The multi-step technique of interest for GMAS will be the same as

for GTDS, namely the Adams-Cowell ordinate second sum. These formulas

are of the Newtonian type and define the predictor-corrector Adams method

for first-order __quatlons and the Cowell method for second-order systems.

The Adams-Cowell predictor formulas as taken from reference 6.1

are

x
n¢.i

= h2

S. + Pi x,,
i=O

IS n t" O'i Xn-

i=O

(6.6-S).

6.6-3



where

l lS,, - V-2 _,.

(6.6-6)

The quantities

of xCt) and satisfy the relationships

V "_ (t)-v -_ (t-h)=_ (t)

and

V "2 _ (t) -V "2 _ (t - h) = _'I x (t).

The Adams-Cowell corrector formulas are siren in reference 6.1 as

-1 -a
v x(t) and V x(t) are called the first _nd second sums

(6.6°7)

(6.6-8)

Xn* I - 11

i-':O

Xn+ !
: h2 ,S + =: "_.+,.

i=O

(o.6-9)

The _i and _i* are called the sum_ad ordinate Adems-Moulton predi-

cator-corrector coefficients and the a. and a.* are the corresponding
i 1

Stormer-Cowell coefficients. These coefficients are tabulated in reference

6.5 for formulas of order 4 through 15.
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6.7 Attitude Model

The modeling of vehicle attitude in GMAS will not include any

six-degree-of-freedom analysis since the detailed analysis of the

attitude system is not the responsibility of GMAS. However, simple

analytic models for attitude maneuvers from nominal cruse to nominal

V attitude and back again are discussed in Section 9.3. The vehi-

cle attitude during various cruse segments will be stored for use in

mission parameter computations that may involve the attitude.

6.7-1



6.8 References

6.1 W. E. Wagner and C. E. Velez. "Goddard Trajectory Determination

Subsystem Mathematical Specifications." March, 1972.

6.2 W. Kaula. "Theory of Satellite Geodesy." Waltham, Mass. 1966,

6.3 g. H. Coodyear. "A General Method for the Computation of

Cartesian Coordinates and Partial Derivatives of the Two-Body

Probl_n." NASA CR-522. September, 1966.

6.4 Unknown. "Brouwer-Lyddane Analytic Orbit Theory." Excerpt

from personal co_nunicatlon with A. Fuchs (GSFC).

6.5 J. L. Maury and G. P. Brodsky. "Cowell Typ_ L_umerlcal

Integration as Applied to Satellite Orbit Computation."

Goddsrd Space Flight Center 553-69-46. Decem_oer, 1969.

6.6 D. A. Lutzky, W. S. Bjorkmsn and C. Uphoff. Final Report for

Radio Astronomy Explorer-B In-Flight Mission Control System

Development Effort. Analytic Mechanics Assoclates, Inc.

Report No. 73-8 under Contract No. NASS-IIg00. March, 1973.

6.7 C. Uphoff. Numerical Averaging in Orbit Prediction. AIAA

Paper 72-934. September, 1972.

6.8 C. E. Velez and A. J. Fuchs. "A Review of _veraging Techniques

and Their Application to Orbit Determination Systems." AIAA

Paper 74-117. J_r.uary, 1-974.

6.9 D. A. Lutzky and C. Uphoff. Final Report for In-Fllght Mission

Control System Design Study. Analytic Mechanics Associates,

Inc, Report No. 71-23 under Contract No. NAS5-I1796. April,

197!.

6.8-1



C_ (t) = - R (6.8-4)R 3

(_ -_) _
m_

C/t_k(t) = I_ _"RI _ " Rk3 (6"8°5)

6.8.2 Gravitational Harmonics

As was the case in Section 6.2.2, a central body-flxed coordinate

frame is used, with the final result being rotated to inertial system

for integration. The notation a(t), b(t), and c(t) will be used for the

body-fixed frame. The matrix a(t) is given by

a(t) =

- _.v_ ,o_, _vb ___/_ _r-_ _ _b

a@ _2 r a_b a2_ a_ a2K

the first three terms are given bywhere the _artials for

_@I_ r

_ _,,';_ _, =
a

m

r _ a r a¢ _ r aK

K/b r"b

...._nd the terms of the second parti_l matrix are given by

(6,8-6)

(6.8-7)

N /a \n n

_I _a _ _ _-_) (,, ÷-'_, (n ÷ ', _ (C:.cos _ _ + S_ s_ "_ m _)_ n' (S'II _)a r2 r3
_0

(6.s-s)

"__ _ r r_ _ .=0

(6.s-9)

[p_+l (sin _) - m tan qbP_ (sin+)1



r D;k _x _ r r 3

N ta \n n

+'+-"2 2
a _2 r n=2 m=o

2(+)° 2P (n + 1)

n= 2 m= 0

m (S,'_cos m X - C",,sin m X) P"'.(sink)

(6.,+-to)

CC_ cos m_. + S_ sin m_.) {tan #,|''+t,, (sin,f'_

(6.8-1t)

+ [m2 scc 2 _- m tan 2 _- n (. + 1)] P_ (sin ,I')}

N n r'+

n=2 m"O

m (S._ cos m X - C_

- m tan qbP m (sin _))
n

siv_ nlN) (P?I +I (sin _)

(6.8-t2)

N n

( nz_2_ = /_,_, m2 (Cmncosm_. + S= =inm,k) pm (sin_.,)
ak2 r n ,',

n = 2 m=O'

1"he partials of P in the last: three t:erms of equation (6.8-6)

were g_.ven in equat:J.on (6.2-5), the second part.ials wft.h respect, to

are given by

_'r III Tb ¥_'i]

It, q
2 Z b -. d

+ZbI--- rt,_ r
r 2

a 2 _. 2 _) xl_ a Yb 1 0

"-_-= - (*_ + .+f,) o

wl_re a xt,/_Yr-=,ayb/_r- b, IIBd aZb/_)-r-b.SA'(_ (I, 0, 0), (0, 1, 0), m_d (0, 0, 1.),
respi_ivoly.

(6.8-I3)

(6.8-I4)

(6.B-iS)

(6.8-t6)
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The c(t) matrix is partitioned into cC and cS corresponding to

the two types of harmonics and is given by

cc = _ \_j_+ _,: , .....c: _ r b _) \_ q_/,_ T_ _.c,': \_:":J ,",_:_,
(6.8-17)

(6.8-18)

where the necessary second partials are given by

c_=

I (n + I) cos mX P_ (si. ¢)
r

cos m_, [p,,.+l(sin ¢) .- m t)_,14, P",, (:;i,_ ¢)'

- m sin m_ P_ (sin _)

_s:

m

I (n+ I) sinm_. P_ (si.,h)
r

sinmk [pm+I (sin_b) -mta._, P°' (sinqb)!
n ii

m cos mh p_ (sin ¢)

(6.8-19)

(6.8-20)

6.8.3 Atomspheric Drag

The matrices for drag are given by

IV _T }
CDA n_-Rn" "_

S(t) = - 2m--'_- L v_ + v_zL
(6,8-21)

• , _,.

^(t)- "-7 .',,_ n.
(6.8-22)
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where the notation was defined in Section 6.2.3.

VRE L has been re-written as

V=zL: R-_

The relative velocity

(6.8-23)

where fl is given by

_o) "

c_J
• y

• X

_. y z

0

(6.8-24)

The partial of p necessary in equation (6.8-22) is glven_ by

whe re

_p_ap( ap,_ _3p _PM'_h__..÷ Of _,/,

_ _ _ h + _ p. a'Tl-f)a-_ _', _ _
(6.8-25)

(6._-26)

.a p _/' ' s"
= cosn _ + P3 CO_p. 2 .

_ _ MN

ah I_

(6 .F-27)

(6.8-28)

(6,8-29)
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The partial derivative of dcnsity with respect to _'J and the D:,rlial of q, with
respcct to R are

!

- _cos"- _ si._]_/£ r ()1 ,'.2 2 ! P.,) _ /a s" _/'

(6.8-30)

+ P_ , + (p. - p.,)cos"

(6.8-31)

The partlal of h in equation (6.8-25) is given by

where

l_.._=.__Re r(l_ f)(2 f-|") cos 5 "_ }_.(cos _)

(cos _i) " 1

R R 4 COS
_XZ l

yz 2

Z (X 2 4 y2

(6.8-32)

(6.8-33)

The quantities _, Pm' PM' Hm' HM' h, :1' P2' P3 snd _B are

related to the drag co-efficient and atmospheric density model as

described in Reference 6.1. The latitude of the sub-satelllte

point is _ and the angle _ is given by

(6.8-34)
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The C matrix component relating to the model parameterS,

is given by

(6.8-35)

6.8.4 Solar Radiation Power

The A(t) matrix is given by

A(t) - v
P,e,u .)'A 3[_ _,] (_-_,]T

mole- .J "
(6.e-36)

where the notation is the same as in Section 6.2.4. The componet_t

of the C matrix for the model parameter k defined by

P, A
k = -.----.

mo
(6 .S-37)

is given by

C(t) - v R _ 7 (6 .S-38)

6.8.5 Finite Thrust

Since acceleration due to thrust engines is independent of

the spacecraft state both A(t) and B(t) are zero. The C matrix

components for the model parameters So, ..., a4 defined in

Section 6.2.5 are

ca(t) . _HRUSTaI_ T (6 ._-39)
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and for the parameters _o ..... _4 and So' "''' _4

C_ (t) ffia lu(t-To)-u(t-Tf)_ GTu_r T (6.8-40)

C_ (t) = a _u(t-To)-U(t-T f) } GTu_ T (6.8-41)

where GT is the transforTnation from the true of epoch to the mean of

T
1950.0 system. The matrices r_ , uo( and U_ are defined by

_T = [ 1, _, _..,2, T3, _,4] (6.8-42)

0

- sin _z.r cos _.

J

cos ct T co._ _T

0

(6.8-43)

- cos a T sil_ 8T

t

- sin r_T sin S1,

co s ST

(6.8-44)

The results of integrating the variational equations to obtain

the state transition matrices under certain simplifying assumptions

are discussed in Section 13.3.
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7. MISSION ANALYSIS PARAMETERS

7.1 Introduction

Mission analysis parameters are used for both mission design

and mission control. When used in mission design they are most

usefully made functions of the orbital elements and _an usually

be evaluated through analytical methods. When the mission analy-

sis parameters are used for mission control, a requirement is

levied for recognition of changes in the parameters am the mission

progresses. Because mission control parameters are usually com-

puted from instantaneous numerical values of position and velocity,

numerical analysis methods are indicated. This distinction between

analytical and numerical analysis methods has generally been pre-

served in the following discussions.
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7.2 Geodetic Data and Ground Tracks

The geodetic data and ground track data are calculated from

the position vector (x, y, z) in Earth-referenced coordinates and

the flattening of the Earth. The calculations (Ref. 7-1) are in

closed form and are used in both the numerical analysis methods and

the approximate analytical solutions.

Geodetic latitude _* is

_, = tan. I z
(X 2 + y2)½(l - f) 2

(7.2-1)

Geocentric latitude _ is

= tan. ! z
(x 2 + y2)½

Subvehicle latitude _v and long_tudel are

_v = _ + sin-I [ f sin2_
r

= - - -g - =E(t - tg)

+ -- - I sift
r

(7.2-2)

(7.2-3)

(7.2.4)

O Altitude h is

h = _ -
RE (1 f)

. . e2) -L Yi]
r _

(7.2-5)

In the above equations

Right ascension _:

Declination 8: 8 = tan "I Zl

(xI 2 + yi 2) ½

(7.2-6)

(7.2-7)

Epoch time: tg

Greenwich mean sidereal time: ag

Earth rotation rate: "E

Earth radius: RE

Radius of satellite r: r = (xi2 + yi 2 + z12)_

Flattening f: f = RE_- R_
REq

(7.2-8)

(7.2-9i

For the subscripts, I indicates inertial coordinates, EQ

indicates equatorial and P indicates polar.
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7.3 Tracking

The tracking problem of calculating the rise and _et times of

a satellite from a ground station has two aspects: (!) the degree

of sophistication of the types of problems solved, a_d (2) the

methods used. The problems are, in a generally increasing order

of complexity:

o appeerance above the horizon,

o appearance above a given elevation angle for the entire

azimuth range,

o a[,pearance above an elevation angle which is d_pendent

or azimuth, thus posing a realistic radar masking situa-

tion,

o computation of critical radar parameters a_ the times of

certain events (such as azimuth, elevation, Doppler

rate, range, range rates and aspect angles at times of

acquisition, loss, zenith, etc.),

o computation of rises, sets and radar parameter_ relative

to an Earth-synchronous comdnunication satellit_, and

o generalization of the circular area of _rackit_g to an

area of any ground shape, such as states and Earth-

resources targets.

Secondly, the methods may vary: (I) continual checking of a

rise-set function throughout the ephemeris of the satellite, (2)

evaluating a closed-form analytical expression only a few times

during an ephemeris. The first method is referred to as a numer-

ical analysis method while the second is an analytical method.

7.3.1 Numerical Analysis Method

The trajectory is computed point by point to obtain the

position vector _ of the satellite which is used in the following

expression along with R, the position vector of the tracking
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station. Both vectors are in inertial coordinates. When the fol-

lowing equation (Ref. 7-1) is true the satellite is rising above or

setting below a given elevation angle Em.

r • R - rR cos(=/2 -Em - sin °I _ cos Era) - 0
D r

When the left-hand expression goes from negative to positive, a

rise is indicated; from positive to negative, a set. If Em is set

to zero, as is the case for a rise or set with respect to the hor-

izon, the equation becomes:

r • R - R 2 = 0

That this is true is seen from the following figure.

(7.3-I.)

(7.3-2)

o

r • R = rR cos

COS a = R/r

=
r • R-R2 =0

m

(7.3-3)

(7.3-4)

(7.3-.5)

(7.3-6)

The radar masking situation can be solved by evaluating az-

imuth and elevation pairs as the satellite passes over a station.

This gives a numerically-defined function E(Az). This function

minus an input function of the mask Em(Az ) gives another function

F(Az) = EL(AZ) - Em(Az) (7.3-7)

The zeros of :this function F give the azimuths and elevations of

the rising and setting poin'ts.

Azimuth Az and elevation E are found from:

x T
Az = tan "l

YT

EL = sin -I ZT

(XT 2 + yT 2 + ZT 2)

where (XT, YT' ZT) are the coordinates of the satellite in a top-

ocentric system at the station, xT being to the East, YT to the

North and zT along the geodetic vertical.

(7.3-8)

(7.3-9)

7.3-2 •



0

Doppler rate Af is found from

A f = -KD r (i - _)

where r is the range rate, KD is a constant and c is the speed

of light.

Attenuation A t is

A t = -40 lOgl0r

Aspect angles to the tracking station are given in terms

of 8 and _. Theta (8) is the angle between the roll a_is and the

line-of-sight to the ground station; phi (_) is the angle between

the negative "yaw" axis and the projection of the line-of-sight

into the "roll" plane.

tan ¢ = - TyB

Tz B

TxB

COS _ (Tx'B2 + TyB2 * TzB2)%

Phi and theta depend on the attitude of the satellite (see matrix

D below) and the position of the tracking station (TxI , Tyl, Tzl )

in inertial coordinates with respect to the satellite. Txl , Tyl,

and Tzl are components of the vector T I which is found from

_TI --R - X

The vector (TxB , TyB, TzB) is calculated from (Ref. 7-2)

D is the direction cosine matrix of the body_axis system with re-

spect to an orbital reference system,

ces(x B, x 0)

COS(ZB, x0)

c°s(XB, YO)

cos(y B , Y0 )

c°S(ZB, Y0)

c°s(xs, z0_

=°S(ZB, Zo_

:c°s(zB, Zo_

(7.3-I0)

(7.3-tt)

(7.3-12)

(7.3-13)

(7.3-14)

(7.3-15)

(7.3-16)
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The orbital reference system (ORS) is defined (Ref. 7-2) as

centered at the satellite with x 0 along the radius vector, z0 is

the direction of the orbit pole and YO forming a dextral system.

(NOTE: For a circular orbit, these axes are up, left and forward,

respectively). The transformation matrix K takes the vector from

the inertial to the ORS system and is a function of inclination i,

right ascension Q of the ascending node and _, the rum of the ar-

gument of perigee coO and true anomaly r.

cos0cos_ + sinScosi cos_-sinSsini sin[} II

[K] = l-sin_cosf} + cosScosi cos_-cosSsini sin_ i

L sini sin_ I

(7.3-17)

cosSsin[} + sinScosi _cosf/sinSsini_

Icos_cosSsinil |-sinesinQ + sinScodsil

-sini cos_| cosi_

In case the attitude of the satellite is more easily expressed

in inertial coordinates, D should be relative to the inertial sys-

tem and K should be the identity matrix.

Tracking problems from an orbiting Earth-synchronous sat-

ellite can bc solved in the same way as they were for ground-based

stations. The position vector of the tracking satellite is used

instead of the ground station. Computational time will be about

the same as for ground stations, the major difference being that

the radius vector of the tracking station is longer. Also, the

value of the elevation angle Em of acquisi_on will be approximately

-80 degrees instead of the +5 or +10 used for ground stations.

The fact that the projection of a truncated tracking cone

onto the surface of the Earth describes a circle suggests that the

rise-set problems might also be solved by checkin_ latitude and

longitude of a satellite in circular orbit to see if the geodetic

position falls within the circle. Thus passage over circular areas

could easily be determined. Without any changes in the mathematics

but at some cost in conputer checking, these areas can be easily

7.3-4



extended to graticules (whose boundaries are lines of letitude And

longitude) or even, with added mathematical sophistication, to

irregularly shaped areas. Such extension (which has been program-

med for Skylab) would be extremely valuable for Earth resources

studies.

7.3.2 Analytical Method

The tracking problem can be attacked analytically by solving

the following equation for the eccentric anomaly E at which the

equation holds and then transformi_g to time (Ref. 7-3).

F(E) -- a(cosE - e)P-Z + (a_/ l-e _ sinE)Q.Z__ - G - P(E)sin Em -- 0 (7.3-18)

(see Note next page)

This equation can be solved for E by using Newton's method:

F(En)

En+ I = En F,(En) (7.3-19)

which is a quickly converging iterative method.

The derivative F'(En) is given by

F'(E) = [a(co_E I)(PyZ z + PxZy) +

a_ l-_e2 sinE(QyZx - QxZy)] 1
e cosE

+

n

" Z a _ cosE - _ • Z a sinE (7.3-20)

with the initial value of E on the right-hand side being evalua-

ted by using an approximate value of E given by

[ .....+ ]
La _/(p._)z + (Q'D 2(l-e2)]

The starting value for #(E), the slant range, J.n (7.3-[8) is

P(E) = {[a2(l-e cosE> 2 + G02 ]

-2GIZ x [a(cosm=e)P x + a_ sinE Qx]

-2GiZy [a(cosm-e)Py + a 1_-_-£ 2 sinE Qy]

-2GIZ z [a(cosE-e)P z + a_ sinE Qz]} ½

(7.3-21)

(7.3-22)
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NOTE: The vectors in equation 17.3-18_ are:

where

Px [cos_cosf2 - sin_sinf_cosi]

P =[_!I _s in_s ini
_ Isin_sin_+ sin_co_cosiJ

g = Zy = icos_sin(0 + [E-e sine to ]-- o _EL" n + T

Z Lsin_

Q = Qy = l-sin_sinQ + cos.cosncosij
Q L cos_sini

_,h_ argument of perigee

c_ N right ascension of ascending node

i _ inclination

N station geodetic latitude

8o ._ epoch station sidereal time in radius

wE _ sidereal rate of change (Earth rotation rate)

T-_ time of latest perigee passage

n _ mean motion

n = aj/2

.- Earth gravitational constant, _ = GM E

G N universal gravitational constant

M E_ mass of earth

a_ semi-major axis of orbit

to .o epoch universal time

The variables in equation (7-27) not defined above are:

G _ G I cos 2_ + G 2 sin2_

GI " _/l-(2f - f2) sin2@ + h

(l-f) 2 REO

G2 =%/1_(2f- f2)sinZ+'÷ h

where
f _ flattening of Earth ellipsoid

h _ geodetic altitude of station above ellipsoid

Z" -
O _ slant range from station to satellite

. !

7.3-6

(7.3-23

(7.3-24

(7.3-25

(7.3-30)

• 2
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When E in (7.3-19) stops converging within a c_rtain limit,

the iterations are stopped and the time of rise or set can be found

from

t = E-e sinE + T (7.3-32)
n

If F'(E) from (7.3-20) is positive, the satellite is rising;

if negative, the satellite is setting.

After finding the rise and set times, future rise and set

times can be found by adding multiples of the period. Then, using

the value of the eccentric anomaly, the state vector in terms of

orbital elemeuts can be determined from well-known classical equa-

tions. Transformation from the orbital elements to Cartesian co-

ordinates in both inertial and rotating Earth systems provide data

with which to compute radar parameters given in equation (7.3-8)

through (7.3-13).
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7.4 Solar Geometry

The required parameters that depend on solar geometry are beta

angle, aspect angles and times of shadowing. The beta angle is the

angle between the Earth-Sun line and the orbit plane. Aside frcm_

being a variable that is useful in other calculations, it is a key

parameter in satellite heating, solar power and surface lighting.

Aspect angles relate the direction of the Sun's rays to the body-

axis system of the satellite. Shadowing times are the times of

sunset and sunrise on the satellite, related to both the penumbra

and unbra of the Earth.

These are both analytical and numerical analysis methods for

calculating shadowing; the methods of computing beta angle and as-

pect angles are analytical.

7.4.1 Analytical Methods

Beta An_l e

The b_ta angle is computed from the following equations:

N z = sini sin_

Ny = sini cos_

N z = cosi

N = (Nx, Ny, Nz)

Sx = cos8 cos_

Sy -= cos8 sina

Sz = sin8

s = (sx, Sy, Sz)

fl = sin'l(N_.S_)

where i is the orbit inclination, flis the right ascension of the

ascending node of the orbit, 8is the declination of the Sun and.

is the right ascension of the Sun.

Beta can be expanded in terms of the orbital elements i and

Q by

(7.4-l)

(7.4-2)

(7 .A-3)

(7.4-4)

(7.4-5)

(7.4-6)

(7.4-7)

(7.4-8)

(7.4-9)

sinfl = sini sinflcosScosa - sinicosf_cosSsina + cosi sun8 (7.4-i0)

This equation is convenient for finding sensitivities to the orbi-

tal elements i and _ by differentiating it.
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Aspect An_les

Aspect angles give the relation of the rays of the sun to

the _ody axes of the satellite. One of these angles (_) is the

angle between the "roll" axis and the rays; the other angle (4) is

between the negative "yaw" axis and the projection of the rays into

the "roll" plane. In an attitude control mode where the roll (spin)

axis is perpendicular to the orbit plane, the beta angle itself gives

the total aspect angle.

In a local vertical attitude control mode (with the "yaw"

axis along the vertical), the angle _ gives the total aspect angle

where

cos_ = cosvcos_ (7.4-11)

with _. being the central angle at the central body between the sat-

ellite and the point in its orbit where the Sun is cl_sest to its

zenith (i.e., "orbital noon"). The aspect angles _ aPd _ are

found from:

- 0 - (7.4-12)

gSY B- L -c°s'-sinv Lsin j

with subscript B indicating that the Sun vector is in the body axis

system. Then 8 and • are calculated from (Ref. 7-!).

Sx
COS_ =

(Sx2 + SY 2 + Sz2) _ (7.4-13)

Can_ = -Sy
Sz (7.4-14)

In the inertial attitude control mode, with the attitude of

the satellite given by a 3 x 3 matrix M of direction cosines of the

body axes relative to the inertial axes and the Sun position given

by (Sx, Sy, Sz) in the inertial system, the compoeents of the Sun

in the body axis system are:

= [M] (74- l

S B Sz I

with the I subscript indicating -he inertial system _nd

rcos(xB,Xl) cos(xB,y I) cos(xB,zl) l

[143 = I c°s(yB,yl) c°s(YB,Yl) c°s(yB,zi)| (7.4-16)

Lcos(zB, Zl) cos(zB,zl) cos(zB, OJ
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O

Then _ and 4> _re calculated as in (7.4-13 and 14 above).

Shad owin K

To obtain the times of shadowing, we equate (Ref. 7-4) the

radius vector at entrance (sunset) or exit (sunrise) of the shadow

to the analytical expression of the radius vector,

R
p ffi

sin(a +_)

and

P
r = l + e cos(_+'/i)

that is,

R p

sin(a+_) I + e cos(8+Yi)

with # re]ated to 8 through the pseudo-beta angle by

cosy = cosfl cose.

Here d i_ cone angle of the penumbra or umbra,

i =u or p

for umbra or penumbra and

r@ - RE
u = d

r8 - R E

ap - d

d N distance from Earth to Sun

R r N radius of Earth

r8 _ radius of sun

_ angle between anti-solar point np and spacecraft

at entrance or exit,

._ pseudo-beta angle, measured between orbit plane

and anti-solar point,

@ _ Central angle measured from entrance or exit to

the orbit midnight point,

yi-_argument of perigee measured from the orbital mid-

night point (point on orbit where spacecraft is

closest to anti-solar point or projection of

antl-solar line on orbit plane),

p ._semi-latus rectum, p = a(1-e)

NOTE : Fp = Yu " =

7.4-3

(7.4-t7)

(7.4-18)

(7.4-t9)

(7.4-20)

(7.4-2l)

(7.4-22)

(7.4 -23)

(7.4-24)



There are two methods for finding _. The first is to step

around the orbit in values of 8 until P from (7-53) is equal to r

from (7-54). Since 8 moves in discrete steps and the point of

equality will not in general be exactly found, a simple Bolzano

interval-halving scheme will find values of _.

The second method (Ref. 7-5) is to solve the equality (3)

of P and r which gives a quartic in cos@:

(C 4 cos4_ + C3 cos38 + C2 cos20 + Cl cos0 + Co = 0

where

with

C4 = c2 - d2

C3 = -2bc

C2 = b2 + 2ac + d2(l + cos2_)

C1 = -2ab

CO = a2 _ d2 cos2_

2a ffi(p sin_cos_ - Recos¥)2+(Resin_)2+(p cos__osS)

b = 2R(p sinacos8 - Recopy)

c = R2(l-e 2 sin27)- p2 cos2a

d = 2p Re sin_cos=

Quadrant checks will place @ in the correct quadrant.

Once _ is found, the time relative to the perigee point can

be found from _ + "/ = r (the true anomaly by (Ref. 7-6).

At _f_-- v _-_ e l+e cos,

_E being the gravitational constant (GM) for the Earth. Hero G is

the universal gravitational constant and M is the mass of the Earth.

Since the semi-latus rectum p appearing in (7._-18) is a func-

tion of a and e, the sensitivity of At with reapect to a or e can

be found by numerical differencing.

(7.4-25)

(7.4-26)

(7.4-27) '

(7.4-28)

(7.4-29)

(7.4-30)

(7.4-31)

(7.4-32)

(7.4-33)

(7.4-34)

(7.4-35)
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7.4.2 Numerical Analysis Method

Beta An_le

The beta angle is computed using the instantaneous stake

vector from equations (7.4-8) and (7.4-9) on beta angle. However,

the vector components in (7.4-4) of the orbit n_rmal vector N must

• _be generated by x, y, z, x, , and z.

The equations then become

F ffi (x, y, z) (7.4-36)

V_.= (x, y, z) (7.4-37)

P Z V (7.4-38)
= x iVl

S = (S x, Sy, Sz)/IS I (7.4-39)

= sln'l(F. S_ (7.4-40)

where S is the vector from Earth to Sun. N and S must be put in

the same coordinate system.
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Shadowin_

Shadowing data are calculated in essentially the same way

as the first analytical method; using the step-by-step integrated

values from an ephemeris to find a function indicative of passing

through the shadow cone (Ref. 7-5). In calculating the shadowing

from an ephemeris, the stepping is done in terms of the position

vector r.

r = (x, y, z)

e : cos-l( _.
RE

Du : [I_:Isin# ÷ (I_:Icos_- s-_-_)tan du} {_OS-u}

Dp ={Ir I sin_ -(Irl cos_- s_nE )tan dp} _cOS,p_

,p and _u are defined by 47-58) and 47-59) of the previous

section. Du and Dp are the distance functions to the umbra and

penumbra cones respectively.

When the shadow function Du or Dp passes through zero, a

sunset or sunrise is indicated and exactly determined by a Newton-

Raphson iteration. The sign of the derivative determines sunset or

sunrise - sunset if negative, sunrise if positive. The derivative

is calculated by

dD A
- V • Z

dt

(P_x-s_)
N - _PX_S

LToj

- (Nx, Ny, Nz)

2' = (N_.X -P_.)/I-P.I = (2x, 2y, 2z)

A
Z

-X/S 2x Nxl
-Z/S 2z N z

(7.4-41)

(7.4-4_)

(7.4-43)

(7.4-44)

(7.4-4.5)

(7.4-46}

(7.4-A7)

(7.4-48)

(7.4-49)
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7.5 Sensor Coverage and Resolution

Optical, radar, infrared and ultraviolet sensors operate on

similar principles as far as coverage is concerned, i.e., they all

operate within the electromagnetic theory, have a _ield of view,

a resolving power, etc. Here the emphasis is on optical sensors

with later extensions to be made to the longer radar _nd infrared

wave lengths and the shorter ultraviolet wave lengths. Optical

sensors are discussed with respect to both astronomy and Earth-

viewing missions.

7.5.1 Astronomy

Given a sensor pointing program that direct_ the sensor at

a point on the celestial sphere defined by right ascension _o and

declination Bo with a half-angle field of view of p, the boundar-

ies of the coverage circle on the celestial sphere are given by

(Ref. 7-7).

sin8 = sin_ o cos# + cos_ o sinP cos_

sin P sin_
sinA_ =

cos_

where 0 is an azimuth parameter and

Various scanning patterns, such as toruses, can be based on these

equations.

Given a table of astronomy objectives in terms of right

ascension and declination, an opportunity program can be written

to determine when the objectives fall within the coverage circle.

This scheme is especially adaptable for graphical display.

(7.5-3)
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A first-order approach at resolution is based on a diffrac-

tion-limited (perfect) telescope and using the Rayleigh criterion.

The resolution between two point sources is given _s the angular

separation 7; given the wave length of the light of i_terest and

the decimeter D of other aperture this is:

1.22
_

D

The image tube resolution is given as d, the separation in

millimeters between lines on the image tube, with Y in arc seconds

(7.5-4)

as

(7.5-5)

where C I is a multiplying factor resulting from energy lost by

secondary obscuration, wave front errors and pointing errors (C I

is often as 1.5). Ps in (7-83) is the plate scale in arc sec/mm

and is given by I

2 tan -I

Ps = D (7.5-6)

where F is the ratio of camera focal length to telescope aperture D

in millimeters.

Knowing the line separation d, the bit rate of transmission

k, the bits/pixel b, the square image tube dimension .< in mm and

the required sampling rate s in samples/cycle, the _Jme required

to transmit one x X x picture is

t = b
k

(7.5-7)

Typical values used are d = 26 nun, s = 3 samples/cycle:, x = 50 ram,

k = 500 kilobits/second and b = 8 bits/pixel. Transmission times

are important for deciding whether to transmit in reai time or dump

to tape.
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7.5.2 Earth-viewing

The coverage area on the Earth, unlike on the celestial

sphere, is not bounded by a circle because of the generally varying

distances to the points of the boundary. The input variables are:

d _ depression angle of the instrument centerline

yN yaw angle of the instrument centerline, measured

from the forward direction of tile satellite

p ,,_ half-angle field of view

"o _ longitude of sub-satellite point

Ao _longitude of sub-satellite point

"AN _l°ngitude of the ascending node

r N total regression rate of the ascending node

h _altitude of satellite

i _ inclination of orbit

The elements of the cone are computed by stepping

around the apex of the cone, in say, lO degree increments of _.

The central angle _H at the center of the Earth is computed from

-I RE
_H = -os

RE+h

R E being the radius of the Earth. Then the angle dE is computed

from

dE = sin "I [cospsind + sinPcosdcos8 ]

If dE is greater than_H, the cone element does not intercept the

Earth and boundary points lie on the horizon circle. These bound-

ary points are denoted by eH, AH" If dE is less than _H, the cone

elements do intercept the Earth and the boundary points Ol, A I on

the interception boundary are located.

The azimuth A z for each _is computed from

Az = sin.l(cosi/cosAo ) + Y + sin. I (sin Pcos_SinO)

For the interception case, the central angle _l is

(7.5-8)

(7.5-9)

(7.5-10)
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sln"l FR E + h
L RE

_/I - (cospsind + sinPcosd cos_)2_

Then the coordinates of the boundary points whether it lie on the

horizon or in the intercept and located by:

Ak = sin'l(cos_bk sinA o + sin_ k cosA o cos Az)

sin_k sin A z

"k = "o + sin'l cosA k

k=H, I

Resolution of Earth-directed sensors has some similarities

to stellar-directed sensors.

(7.5-ii)

(7.5-12)

(7.5-13)

(7.5-14)
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7.6 Relative Vehicle Geometry

The relative position P_R and relative velocity V_R of satel-

lite 2 with respect to satellite 1 are given by

=-Pz _l (7._-L)

_R : _2 " XI (7.6-2)

Aspect angles of satellite 2 with respect to satellite I are

given by the generally similar equations as for computation of Sun

aspect angles and tracking station aspect angles. Thus,

xi : x2 - Xl (7.6-3)

Y_ = Y2 " Yl (7.6-4)

zi : z2 - Zl (7.6-5)

yi
ZB i

with M given by (7.4-16). The aspect angles and are

xB

cos0 " 2 + yg 2 + ZB 2

"YB
tan_ : --

zB

The mutual visibility can be determined by eval_ating the vis-

ibility function between satellite 2 and satellite I (Ref. 7- ):

R = (P_2 " PI) 2" p22eI2+(P22+pI2)S2-2s2p Z " PI
t

where

S = RE + hA_

RE being the Earth radius and hA_ being the height of the atmos-

phere. When R is negaLive, mutual visibility is imp|led; s posi-

tive value denotes non-visibility. R must be evaluaLed on a point

-by-point check of the two ephemerides.

(7.6-6)

(7.6-7)

(7 .b-8)

(7.6-9)

(7.6-_o)
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7.6 Orbit Stability

7.6.1 General Formulation

A basic problem in highly-eccentrlc earth orbital analysis is

that of orbit stability. Orbit stability refers to the characteristic

of orbits whose time-varylng periapsis radius remains over its initial

value while under the perturbative influence of lunar and solar grav-

ity.

The relevant equations describing orbit stability may be derived

from writing the third body gravitational force as the perturbating ac-

celeration in the planetary equations (Reference 7-12). Then the time

derivative of the perigee radius q = a(l-e) to first order in (r/a D) is

q " " nae r

_D r
R =--(1 + 3 cos 2 _)

2_D3

S aD 3 cosy sin (_+f) -sin7 cos (_+f) cos cos

where r is the satellite radius from the earth and aD is the semimaJor

axis of the disturbing body relative to the earth, and where the non-

standard parameters are illustrated in Figure 7.6-1. In writing equa-

tion (7.6-i) we have anticipated the result that aa = 0 for third body

accelerations.

(7.6-L)

(7.6-2)

i 5&TELLIT£ m y

I t_OOE 800 ( .

Ftgl,rp 7,b-), DerLnLttv. Of V.rl.SIpR
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The singly averaged form of equation (7.6-11 is obtained by assum-

ing the disturbing body does not move during one orbit of the satellite.

Then equation (7.6-11 may be integrated over one period of the true anom-

aly f, yielding the change in perigee per orbit Aq where

where

Aq ffi B(a,e) g(?,w,i/ (7.6-3)

B(a,e) ffi-F

T = 2T _f_

ae( 1.e2 ) 1/2 (7.6-4)

g(T,w,i) ffi sin 2 Y cos 2 w cos i-(cos2?-sin2?cos2il-sin 2w

O

The doubly-averaged equations describing the long term periapsls

radius evolution are generated by averaging the slngly-averaged equation

over the period of the disturbing body. Then the formal integration In-

dlcat_d by the equation

_Q ffi Aq£ _ nq(t)dt (7.6-5)
iffil

is carried out with the motion of the disturbing Oody _ represented by T

yffi _ + 7t = _ + nDt (7.6"61

The result can be written

ffiK0 _l sin (2nDt + K21 + K3t + K_ (7.6-71
Aq

where _aSe _ (I'e21KO "T

+d

K2 ffitan-I (K5/K6) + r + 7D0

K3 = " P_r_ (sin 2 w sln211

K 4 = initialize Aq ffi0 at

K 5 = cos 2 w cos i

I
K 6 = _ sin 2_(i + cos2i)

t=O

(7.6-8)

J
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7.6.2 SABAC Technique

The general formulation of the third body perturbative effect

on the perigee evolution was presented in the previous subsection to

motivate the following summary of the techniques used in program SABAC

- Stability Analysis by Approximate Criteria (Reference 7-13). The

normal SABAC documentation is quite difficult to follow. Therefore

the SABAC equations will be summarized but reference will be made to

the above general formulation.

The SABAC approach evaluates a candidate orbit for a series of

approximate criteria until the first criteria violation. It then imme-

diately proceeds to the next orbit. The criteria are as follows

with

11 Long term stability:

e _1/2
(de)LR " 4 (Assin2isSin2_s +AMsin2iMsin2w_<0

A d - 15r(pD/PE)(a/PD 13 fD 3/2

( - 1.e 2

(7.6-9)

(7.6-101

This corresponds to requiring the llnear term of (7.6-7) to be

positive (i.e., (KoK3) s + (KoK3) M >10)

2) Short term stability:

{ M3/2)_ 3 3/2._ } _< 0(de)s R ffi -e _1/2 (AM/_ ,M +(As/_ s )_3,s

where _3,D ffi_I,D_2,D(PD/rD)3 and _i _2 are the projections of the unit

vector to the disturbing body on the line of apsldes and semilatus

rectum, respectively. This corresponds to keeping the perigee altitude

from decreasing during the first orbit, i.e., from equation (7.6-31

(7.6-11)

as g(Ys, s,is) + g(YM, M,iM) >i 0 (7.6-121

3) Intermediate range stability:

(de)iN T = (de)< sR,s >,M + (de)LR,M _< 0 (7.6-13)

in whlch<sR,s>,M means the short range effect of the sun averaged

over the lunar period. This corresponds to determining that the aver-
aged effects of the sun and moon for the first month result in increased

perigee radius.

4) Lunar Ripple:

1/2
dej* - - e

J AM (k) As (k)

_M3/2 B3,M + _s3/2 B3,s
K=I

_<0 (7.6-14)

in which J is the number of passages at perigee over half a lunar month.

&
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This criterion corresponds to restricting the lunar sinusoidal

term of Equation (7.6-7) from causing perigee to decrease below its

initial value when the sin term reaches its minimum (negative) value

during the first half-month.

5) Solar Ripple:

_e <sR,s >,M > _eLR or,

_eLR < _ _e<sR,s>,M

if not satislfied,

This criterion supposedly corresponds to insuring that the solar sinu-

soidal term does not cause perigee to be lower than its initial value

(equivalently, eccentricity to be higher than its initial value). The

derivation of (7.6-16) is uncertain; an _pproximatlon to it can be

found in the following manner. Let the change in eccentricity due to
the sun be written

Ae = at + bsin 4_

where t is measured in years. For stability, the constant a is assumed

to be negative leading to a long term decreasing trend, However the
sinusoldal term could cause a local maximum near t - 3/8. To insure

stability even in this '_orst" period we require

3__%a
Ae(t " 3) = 8 " b< 0

The constants a and b may be approximated by setting

AeLR = a

Ae <sR,s >,M
= dA_____e(t = 0) = a + 4Tb

dt

Combining the two previous cases results in the condition

2
_eLR< _ (_e<sR,s>,H " _'LR)

which is a l_eneral approximation to the SABAC result stated in (7.6-16).

An alternate approach which appears to be pKeferrable would be to use

the full equation (7.6-7) to estimate both the lunar and solar effects

directly and avoid the numerous and unnecessary approximations indica-
ted above.

6) Very Long Range Stability :

There are two versions of SABAC corresponding to two methods

of computing the very-long-term stability. Both methods essentially

use the constants of Lidov's theory

(7.6-15)

(7.6-16)

(7.6-17)

(7.6-18)

(7.6-19)

(7.6-20)
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C 1 = ( cos2i

2
C2 = (i-()(_ - sin21 sin2_)

6.a) In the first method the extremal values of (- l-e 2 are

determined as follows. Tf C2 > 0

5
(max " I - _ C2

E_n = _" t + ]"{Cl + C2)- (l + Cl + C2) T' cl

If C2 < 0 they are computed as the roots of

In the above two sets of equations the parameters are computed as

though the moon were acting alone, Then

emax - e 0
sin Eo - o< Eo _

emax-emin

(7.6-21)

(7.6-22)

(7.6-23)

(7.6-24)

TVL R " _(emax-emin) cos E 0 TSAT I AelNT I (7.6-25)

where AelN T is computed by (7.6-13).
assumed satisfied if

2E0
T* = TVL R (i - -_) >/L

The very-long-term stability is

(7.6-26)

6.b) In the improved version of SABAC for near-polar orbits

the very-long-term stability is computed differently. An auxiliary

plane, denoted PA is constructed by rotating the ecliptic by iA about

the nodal line of the moon where

,. (7.6-27)

The predicted lifetime L is then computed from

A__
L - 2(_r- _A) At (7.6-28)

where _A is the satellite argument of perist!e referred to the auxiliary
plane PA. The last term is computed from

(/.(A_o)_u +(_)A_ (I +w) (7.6-29
_ LR,M LR,s

where
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The documentation does not detail how the factor w is computed.

(7.6-30)

7.6.3 Alternate Approach

An alternate approach to that of SABAC should be considered which

could be as accurate, more efficient, and much clearer than SABAC. This

would involve the direct use of equation (7.6-7), possibly in conjunc-

tion with the proceed-until-conditlon-violated approach of SABAC. The

SABAC technique appears especially questionable in the analysis of the

so-called lunar and solar "ripple" effects. Significant improvement

in this area could be made with equation (7.6-7) in this respect.
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7.7 Lifetime

The equation for the approximate lifetime L is given as a

function of initial perigee altitude hp in km, initial apogee alti-

tude hA in kin, ballistic coefficient B and date of latmch tL in

years (Ref. 7-9).

7 tL+Ln- I

L n = L3 X fD (hp, tL + Ln_l) I (7.7-1)

J tL

where ] indicates that fD is averaged over the period from tL to

tL + Ln. I. The iterative process indicated in (7.7-1) is carried

out until

ILn_l- LnI<C (7.7-2,

where C is a preset small lifetime tolerance figure set by the user.

L3 in equation (7-101) is

L 3 ffiel(hp,hA) • B - fi_(i,_) (7.7-3)

B is given by

M

cDA
where M is the mass of the satellite in kg, CD is the drag coeffi-

cient and A is the reference area in square meters.

The functions fD(hp, tL + Ln-l), Ll(hp,hA) and fi,_(i,_ have

been precalculated and can be stored as tables.

The function fD is conveniently expanded in a polynomial in hp

(Ref. 7-10) as

_D = fDl(t)+fD2(t)hp+fD3(t)hp2+fD4(t) hp 3

where

t = 4(t L - 1974.00) + i

tL being in fractional years to the nearest 1/4 year.

gives fD for a nominal density 1962 U.S. Standard atmosphere and

for a +2_ density atmosphere over the period from 1974.00 through

1984.75.

(7.7-4)

(7.7-5,)

(7.7-6)

Table 7.7-1
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The function L 1 polynomial has been made an exponential in a

polynomial power in circular altitude h c (Ref. 7-5):

L 1 = e L1 + L2hc + L3hc2 + L4hc3 + L5hc 4

with

L 1 = -.135 x 102

L 2 = .713 x I0 -I

L 3 = -.143 x 10 -3

L 4 = 1.0 + .167 x 10 -6

L 5 = -.778 x I0 "I0

The function fiw is a function of i only when circular orbits

aye considered (Ref. 7-5):

2
fi_ = fi_,l + fiu,2i + fi_,3i

with

fi_l = 0.934 x I00

fi_2 = -0.486 x 10 -3

fi_3 = 0.120 x 10 -3

fi_4 = 1-0.992 x 10 -6

3
+ fi_41

(7.7-7)

(7.7-8)

(7.7-9)

(7.7-10)

(7.7-11)

(7.7-12)

(7.7-13)

(7.7-14)

(7.7-[5)

(7.7-16)

(7.7-17)
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8. LAUNCH PHASE ANALYSIS

8.1 Introduction

This chapter summarizes the mathematical details of launch

phase analysis. Launch phase analysis determines the trajectory

and maneuver sequence from launch to insertioL_ onto some target

orbit. The orbits encountered are the parking orbit, Lhe transfer

or intermediate orbit, and the target orbit. The maneuvers are in-

sertion into the parking orbit, injection into the transfer orbit,

and insertion into the target orbit. The t_ning of the launch (both

in terms of calendar date and time-of-day) is a critical element in

launch phase analysis because of the constraints to launch from

specified lauvch sites in a general direction (launch azimuth).

This chapter attempts to provide a unified discussion of launch

phase analysis. Launch is quite different from the 1_sual orbital

analysis because of the special parameters used to d_scribe launch.

Th_s frequent references are made to other sections of this report

for the detailed formulation of general parameters.

Section 8.2 descusses the determination of the launch profile

from a standard set of launch parameters. Section 8.3 describes how

this profile is used in a launch period/window analysis. Section

8.4 summarizes the techniques and models used in detailed launch

phase trageting. Section 8.5 discusses launch phases error analy-

sis.
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8.2 Launch Profile Determination

8.2.1 Definition of Standard Profile

The standard launch profile will be assumed to consist of a circular

parking orbit, a coplanar (Hohman) transfer orbit, and a circular target orbit.

Instantaneous, impulsive maneuvers will be assumed throughout. Variations to

this "standard" profile will be discussed in Section 8.2.4.

This standard profile is as simple a model possible yet yields very

useful data in a first-cut launch opportunity assessment study. It is an

excellent approximation to the synchronous orbit profile (Ref. 8"I, 8-2).

The profile is defined by specification of the parameters listed in Table 8.2-I.

Launch date DL

Launch site latitude SL' longitude 8L, azimuth EL

Launch time-of-day tL or parking orbit ascending node _p

Parking orbit radius

Target orbit radius _, right ascension RT' inclination iT

Long or short coast flag, k (see 9-15)

Integer number of parking orbits Np or transfer orbits N I

Table 8.2-1. Standard Launch Profile Input Parameters

8.2.2 Launch Timing and Orbit Plane

Two possibilities exist for the specification of the launch time-of-day

and the resultant parking orbit plane. The required input parameters are the

launch date, DL, the launch site latitude $L and longitude _L' and the launch

azimuth rL. Then with the specification of the launch time-of-day tL, the

(inertial) right ascension at launch OL and the equatorial Inclination ip,

ascending node longitude _ and normal vector N of the launch plane may be
p'

computed. Equivalently if the ascending node _ is specified, the launch time-
P

of-day and the other parameters may be computed. A clear concise development

of these calculations is provided below with most variables defined in Fig.

8.2-i and formulation derived from spherical trigonometry.

Launch Time-of-Day Input:

8L = (GHA + 8L + _ tL) rood 360
-I

-[sinOLcos cosoLsin.,. sin |
l-cos %L cos rL - sin 8L sin #L sin ELJ
L cos _L sin EL

(8.2-1)
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Figure 8.2-1. Launch Geometry %,

0

\

i

i _< _:'_--'--- _ .........................
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Figure 8.2-2. Transfer Orbit Geometry
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ip cos -1 (N) 0 .iip < 90

_
f_p tan -1 (- x/Ny) 0 < _p

Longitude of Ascending Node Input:

ip = cos -1 (cos _L sin EL)

= (sin sin ip, -cos

8 L = (% +A6) mod 360

< 360

o ! i __ 90 ° (8.2-5)

cos i ) (8.2-6)sin ip, P

(8.2-7)

where AO = 90°, if ZL = 90°

90°-cos-l(tan %L/tan i), if TL < 90° (8.2-8)

90°+cos'l(tan _L/tan ip)S if EL • 90°

(eL - 0L - GHA) mod 360

r..L = .... _ (,8.2-9)

In equations (8.2-1 and -9), GHA is the Greenwich hour angle ac Oh UT on the

launch date j given by

CHA = 100°07554260 + 0°9856473460 T d + 2.9015 x 10 -13 Td 2 (8.2-10)

where Td = days past Oh January 1, 1950. In Chose equations 8L is the input

launch site longitude and _ is the rotation rate of the earth.

In either case the definition of RTN coordinate system defining the launch

plane (Figure 8-1 or 8-2) cnn now be completed

^

R = (cos OL cos #L' sin 8L cos #L' sin _L ) (8.2-11)
A A ^

T = N x R (8.2-12)

8.2.3 Trajectory and Maneuver Sequence

Having determined the launch plane and timing, the next step is to com-

pute the trajectory and maneuver sequence for the standard launch profile. The

intersection of the launch plane (containing both the parking orbit and the

transfer orbit) and the target orbit plane is first computed.

normal NT is given by
^

NT = (sin _T sin iT, -cos fiT sin iT, cos i T )
A

Define the auxiliary vector I° as the quantity

I
o

The target plane

(8.2-13)

(8.2-14)

then defines the intersection of the launch plane and the target plane.

t
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Let _ represent the vector to the point of injection from the parking

orbit to the transfer orbit. Then assume the user states his preference for

short or long coast by specifying the flag

k m +1, short coast

-1, long coast

The geometry discriminator K is computed from

z = (_ x i ) • _ (8.2-16)
O

K is then +i with the positive sign corresponding to Io lying in the first or

second quadrant of Figure 8.2-2; the negative sign corresponding to the third or

fourth quadrant. To force I to point to the injection point I must be set to

= k • X • _. (8.2-17)
o

With these definitions the trajectory and maneuver sequences ere determined.

The conic descriptions of the three phases are summarized in Table 8.2-2. The

parameters Rp, %, i T and GT are input variables. The parameter _p is either

input or computed fro_l Equation ('8.2-4). The parameter ip is computed from either

Equation (8.2-3) or 8.2-5). The parameter _I is computed as follows. The unit

vector to the ascending node of the parking orbit is A _er- _
P

Then
I

^

Ap = (cos Rp, sin _p, 0)

(0< coI <360) is defined by

sin_z- (_xi) •

cos _z " _ " i

i i

Semimajor axis, a

Eccentricity, e

Argument of Perigee

Inclination, i

Longitude of ._C Node,

Entrance True Anomaly, f

Parking
Orbit

i
P

P

Intermediate

Orbit

i

(%+ %)
(%- Nl/2a z

u I

i
P

_p

0

Target
Orbit

0

D

i T

RT

(8.2-t8)

(8.2-t9)

Table 8.2-2. Launch Phase Trajectory Description
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The eomputatior, of the critical points within the sequence are summar-

ized in Table 8.2-3. The basic directions in the inertial equatorial System are

those of the launch site at launch R(8.2-11),the velocity at launch _ (8.2-12),

the injection and anti-insertlon position I (8.2-17)_he injection and anti-

insertion velocities S and the post-insertlon velocity direction P where

- N x I (8.2-20)

: x

Position Vector

Pre-maneuver Velocity

Post-maneuver Veloclt_

insertion into

i_ark ing Orbit

^

Injection into
Transfer Orbit

Insertion into

Target Orbit

A
P

^

S

Table 8.2-3. Launch Phase Maneuvers

Finally the times of the maneuvers must be computed. Some generality is

permitted here by allowing _mitin 8 several periods be_Core performing the in-

jection or insertiou maneuvers. Let Np be the integer number of "waiting"

parking orbits and NI be the integer number of "waiting" transfer orbits. The

angle between the launch and the first opportunity for injectiou is 0
C

(0 <_ 0c < 360) where

sin Oc = (-_ X 2) •

cos 0c = _. f

The total coast time in parking orbit is then

T c = (0 c + Np 360) (Rp 3-_

The total coazt time in the transfer orbit is

3 %
TI= (N_+%) 2_ (a z /u)

8.2.4 Variations to Standard Profile

(8.2°22)

(8.2-23)

(8.2-24)

The standard profile described in the previous three subsections is ef-

fective because it can be generated very quickly for each use over a wide range

of launch dates VL and launch times _ (or ascending nodes _). The standard



profile provides a generally adequate simulation of the launch phase for most

missions. However, closed-form analytical solutions may also be computed for

other variations of the launch profile. These variations include eccentric

target orbits and non-coplanar transfer orbits.

Eccentric Target Orbits

The standard £omulationmay be easily adapted to eccentric target orbits.

It is possible that eccentric drift orbits might be desirable for eccentric

synchronous missions such as the International Ultraviolet Explorer (IUE)

mission. The additional input required to describe the target orbit includes

the eccentricity eT, and the argument of periapsis _T' while the semimaJor

axis a T is substituted for the radius of the target orbit x RE .

In thi_ variation the transfer orbit is still assumed to be a Ho_an

transfer lying in the parking orbit plane. The calculations are identical to

the standard profile _hrough Equation (8.2-19). However, the intermediate

transfer orbit must _ow be computed in terms of the elliptical input elements

(aT, eT, _T ) instead of the radius _.

The vector to the ascending node of the target orbit is given by

_ = (cos aT, sin_T, 0)

An auxiliary vector _ may be constructed in the target orbit plane as

A

The vector to perigee, PT' is then given by

PT " co_ _T _ + sin _T BT

The true anomaly at insertion fI (0 IfI < 360)
^

direction of the insertion point (-I) as follows:

sin fI= (iX T) • ST

cos - PT " i

The radius to the insertion _int is then given by

a T (1-e_)

ffi l+e T cos fl

The radius _ then replaces the variable

(8.2-26)

(8.2-27)

is then computed from the known

(8.2-28)

(8.2-29)

in Table 8.2-2 d:_scribing the inter-

mediate orbit. The input variables (aT, eT, _T ) are of course entered into

the target orbit parameters.



The only other parameters affected in standard launch sequence is the position

and velocity following insertion into the target orbit. The speed at that

point is given by

%

VI
aT

(8.2-3o)

(8.2-31)

The flight path angle 7 (-90 ° _ 7 _ 900 ) is glv_.by

o sin f
"T

tan =
l+e T cos f

The position and velocity following insertion into the target orbit are then

T) - i

XT(t T) = V l P

• P = -sin y i + COS y (i X i T)

Inclined Transfer Orbits

The ability to specify the longitude of the ascending node of the parking

orbit as an initial condition (Section 8.2.2) permits the evaluation of Hobman

transfers involving inclined intermediate orbits. The inclusion of such trans-

fers may be necessary at some time to meet peculiar _ission requirements while

satisfying mission constraints.

The critical £eature of such a transfer is that the nodes of all three

phases are collinear, resulting in a 180 deg Hohnmn transfer. Note that if

this assumption were removed a unique solution could still be detezmined via

Lambert's theorem if the transfer orbit transit time were epecified. Howeverj

the intuitive feeling is that the Hohman transfer would be n_mr optimal and

numerical techniques (see Chapter ll) would be required to determine and prove

the global optimal solution.

This extended possibility foe launch analysis could be easily developed

using the Sun technique (Reference 8-3) implemented in the post injection trim

analysis in MAESTRO (Reference 8-4). The Sun technique generates analytically

the optimal two-impulse 180 ° transfer between non-coplanar orbits. The mathe-

matical det.lils of this method are supplied in Chapter ID. The method, however,

results in the specification of the trajectories and maneuvers of the launch

sequence defined in Tables 8-2 and 8-3. The Sun technique _s a powerful :ech-

nique and recommended for use in the launch phase analysis.

(8.2-32)

(8.2-33)

(8.2-34)
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8.3 Launch Window Analysis

The previous section discussed the construction of an analytic launch

profile. This section addresses the evaluation of such a launch profile in

launch window analysis.

Launch window analyses determine the optimal launch dates (or equivalent-

ly the launch period) during which time adequate daily launch windows exist. A

daily launch window is defined as a continuous interval of time on a single day

that a launch may be made which with the ensuing transfer _atisfies all mission

and system constraints.

8.3.1 Method of Analysis

The launch window analysis generally has two principal independent param-

eters: the candidate calendar dates and the ascending node or time-of-day of

launch on each date. Critical parameter constraint contours are then plotted

on the grid whose principal axes correspond to these time-variables. An

example is given in Figure 8.3-I taken from Reference 8-2. The contour plot is

of a launch period-launch window analysis made for the Synchronous Meteorologi-

cal Satellite (SMS) mission. The critical mission-system constraints for this

mission were those on shadowing in the parking and transfer orbits and solar

aspect angle at insertion into transfer orbit and synchronous orbit. The

hatched lines represent regi¢._s that viola_.e the sol_r aspect _ngle constraint;

the light solid lines define contours of constant (acceptable) transfer orbit

shadow duration. Th_ t_ open belts define the time-varylng launch windows

during the given launch period. Other studies demonstrated that optimal fuel

requirements occurred at ascending node values at R = 225 and 305 °. The final

launch time strategy as a function of launch date is then d_monstrated by the

heavy solid line of the figure. Such a plot is extremely useful in launch

window analyses and should be the primary output of those sludies.

8.3.2 Computational Flow

The general computational flow for launch window studies is illustrated

in Figure 8.3-2. The _tructure is essentially the same as that of FLAP (Refer-

ence 8-1) but with the launch time and launch date loops reversed. This re-

vised structure permits the one-time computation of launch dn_e peculiar data

such as the Earth-Sun direction or the Greenwich Hour Angle for the range of

launch times. The launch time or ascending node computation was given in

' 8.3-i
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O

Section 8.2.2. The trajectory/maneuver sequence computations were presented

in Sections 8.2.3 and 8.2.4. The computation of the mission/systems constraints

is discussed in Sectior_ 8.3.3 below.

Input i_ata

I
/

Compute / _IA, F_arth-Sun Directlons

LD Peculiar r ....Data

Compute Launch
Time or Ascend

N_:,de Data

i
Compute Launch

Profile for

Given DL, CL

Cot %)

1
Compute Launch

Cons traint

Parameters
#

Yes

No

I Update tTCer_)_
m

Process and ]Produce Plots

Figure 8.3-2. Launch Window Analysis
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8.3.3 Launch Phase Constraints

Constraints are imposed on the launch and transfer phases of a mission

by the mission objectives and spacecraft systems requirements. The parameters

considered in the launch window analysis are generally amenable to simple for-

mulation and efficient computation to facilitate the necessaxy wide scans in

launch date and daily launch time. After identifyin8 attractS.re dates and

orbits more detailed studies may be made (Section 8.4). Candidate launch

phase parameters are siren in Table 8.3-3 below.

Shadowin8

Earth Site PassaEes

Orbit Lifetime

Orbit Stability

Solar Aspect Angles at Maneuvers

Station Visibility at Maneuvers

Table 8.3-3. Critical Launch Parameters

The first four parameters are based on the orbits of the transfer phases as

given in Table 8.2-2_ the latter two on the critical states at maneuvers as

given in Table 8.2-3.

The shadowing data needed includes the start time and duration of each

shadow within each of the orbits encountered along with the total time-in-

shadow encountered. The earth site passage data includes the time of entrance

and the duration over specific earth sites, (e.g., science target sites or

trackin E sites) and the total time over sites. The orbit lifetime computations

are analytic expressions for gros_ estimates of the lifetime for low-altitude

drag-affected orbits. The orbit stability approximations determine the life-

expectancy of high-altitude orbits affected by third-bod> gravitation. Either

of these computations if efficiently formulated is appropriate for launch

window studies. The solar aspect ansle at maneuvers is critical because it

defines the vehicle maneuver attitude relative to the sun which may expose

sensitive instruments to sunlight or violate solar array requirements. The

station visibility at maneuvers may be necessary for maneuver impl_nentation.

The mathematical formulation of each of these parameters is detailed

in Chapter 7.
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8.4 Detailed Launch Targeting

A sllghtly different kind of launch phase analysis capability

is represented by the routine START of Reference 8-5. Tht_ is the

capability to target to desired conditions using realistic launch para-

meters as the control parameters. This targeting capabil£_y uses the

results of the launch window analysis to narrow the range of appropriate

launch dates initially. The START capability provides a refined and

extended analysis of the launch phase for a specific date and approxi-

mate time of launch. Suggested extensions to the START capability in

Section 8.4.2 would appear to be extremely useful.

8.4.1 Detailed Launch Profile

The detailed launch profile input parameters are defined in

TableS.4-1 and illustrated in Figure 8.4-I. The detailed model permits

the bo0st or ascent arc and the injection arc to be modeled as finite

duration in both engle and time. Furthermore, the injection burn it-

self can be modeled as a finite thrust maneuver. The parameters defining

the parking orbit allow its modeling as either a circle [rp-0, Vp=(_/Rp) ½]

or ellipse (rp _ 0).

The conversion of these parameters into a post-injection state

suitable for targeting closely parallels the development of the standard

profile defined in Section 8.2. The launch time-of-day input option is

required for this application so equations (8.2-1) through (8.2-4) are used

to compute the normal N, the incllnatlon _ and node flpOf the parking

orbit. The RTN coordinate system is then established at the launch s£te

(at the launch time-of-day) via Equations (8.2-11) and (8.2-12).

The state at the burnout point following the Ineertlon into park-

ing orbit. This state is computed as

_B " Rp (R cos _ L + T sin _L ) (8.4-l)

v s = Ve (-_ sin(_L

tB " tL + At L

+ r_) + _ cos (_L + rp) (8.4?2)

(8.4-3) ...
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_ Figure ......8.4-i.
Detailed Targeting Profile

Phas._e

Boos t

Parking Orbit

Injection (Im-

pulsive)

Injection (Finite

thrust)

Fixed

Parameters

Launch site longitude 8 L

Launch site latitude eL

Central angle of burn _L_

Time interval of burn At L

Burnout radius Rp

Burnout velocity Vp

Burnout flight path angle rp

Central Angle of Burn _I

Time interval of burn bt I

Vehicle mass before burn M
o

Mass flow rate in

Thrust magnitude T

Control

Parameters

Launch azimuth Z

Launch ti_,e tL

Parking orbit coast time Atp

Injection in-plane angle

Inlection out-of-plane angle

Injection magnitude AV

Burn time t B

Table 8.4-1. Detailed Targeting Parameters



The preinJection state 0tl, VI, tl) is then computed. With the

assumption of a circular parking orbit the state is given by

_R_- Rp (_cos× + _ slnX)

- VF (-_sin×+_ sinX)

t_ - tB + Alp (8.4-6)

where

X "X L +_pAtp (8.4-7)

mp= _/R3p) _ (8.4-8)

and where _ tp is the control parameter of parking orbit coast time.

In the case of elliptic motion and/or a more accurate propagator, th_

state at the end of insertion burnout is propagated forward over the time

interval Atp to generate _I' VI)"

The post-injection state depends directly on the parameters de-

fining the injection maneuver. The current model (Ref. 8-5) is based

on a fixed attitude maneuver using either impulsive or finite thrust.

The direction in either case is specified by the in-plane (elevation)

angle a from the premaneuver velocity vector V I and the cut-of-plane

angle B described in Figure 8.4-l. The right ascension of the premaneuver

velocity vector in the RTN System is

_an" I (VT/VR) 0<--6<3608 i

Then the direction of the Injection burn is given by

_v - co8 cos (_+6)i + c_Ss_n (_+_)÷ + slnS_l

The post injection state for the impulsive model is then _iven as

+

_RI - Ri

+

tI = tI + 8t I

The post injection state for the finite thrust model is given in

Section 9.2.

8.4-3
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8.4.2 Targeting and Optimization

The six controls defined in Table 8.4-I may be varied to satisfy up

to six target parameters. If the number of controls exceeds the number

of targets s_e quantity may be minimized as well.

For general earth orbital targeting it is reasonable to define the

target or performance variables in terms of the state following the post-

insertion burn (8._-II, 12, 13).Thls permits a standard formulation of

the general targeting process. Assume that the target parameters are the

six conic elements denoted by the vector i- Let the desired values of

these parameters be denoted T*. Then let the K-th iterate of the control

parameters be denoted a K and the corresponding value of the target para-

meters be denoted T K. The (K+l)th iterate value of the c=ntrol parameters

is then formally given by

aK+I + f[T - TK, f K] (8.4-L4)

where the details of this targeting is given in Chapter II. The zero

iterate needed to start the process may be computed from the standard

launch profile described in Section 8.2. The sensitivity matrix may

be computed by numerical differencing or the analytic equations given

in the state transition matrix computations provided in Chapter 6.

It would be desirable to extend the targeting and optimization process

through a second maneuver at injection into a third orbit. This would

then allow the automated and integrated targeting of the parking, trans-

fer and target ozbits for preflight analysis.
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8.5 Launch Phase Error Analysis

The preflight error analysis of the launch phase is generally

performed by the launch vehicle personnel up to and including the in-

Jection maneuver. The results of this analysis is an injection covarl-

ance which define, the errors at the injection point based on errors in

the boost maneuver_ the parking orbit and the injection maneuver itself.

GMAS mus _. be able to accept such an injection covarlance and propagate

it along the transfer orbit to the fnJectlon point for the kncluslon of

the insertion maneuver errors. This_ however_ is the purt ose of the

maneuver error analysis addressed fn Chapter 13. It is _ecessary to

transform the injection covarlance from any of the injection peculiar

coordinate systems to a standard system for the use by the linear or

Monte Carlo analyses.
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9. MANEUVER _K)DELING

9.1 Introduction

The next three chapters consider directly a primary problem

addressed by GMAS: maneuver analysis. This chapter diLcusses the

general mathematical modeling of maneuvers. Chapter I0 addresses

the deterministic targeting of impulsive maneuvers. Chapter ll

considers the refinement of maneuvers by numerical techniques to

permit more detailed implementation models, targeting of more

complicated maneuvers or sequences, or optimization of maneuvers

when possible.

As stated, this chapter is intended to provide the mathemat-

ical models used in general maneuver analysis. Section 9.2 defines

the mathematical models available for maneuver simula_.ion. Section

9.3 addresses tile modeling of vehicle attitude at maneuvers. Sec-

tion 9.4 discusses the propulsion system characteristics.

The consideration of maneuver command generation and proces-

sing in the operational Flight Dynamics System was beyond the scope

of this effort but would be considered for possible inclusion as a

separate chapter in GMAS at some later date.
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9.2 blaneuver Simulation

Three options for simulating burn maneuvers will pcovide the

user with the capability to simulate a given maneuver with three

levels of accuracy. The three options are described as follows:

I) Impulsive delta velocity maneuver,

2) Analytical finite burn maneuver,

3) Numerically integrated finite burn maneuver.

Each option will be selected by user input.

The equations for these models and the underlying assumptions

for each model will now be described.

9.2.1 Impulsive Delta Velocity Maneuver

This frequently-used model (Ref. 9-1) will instantaneously

apply a delta i_ertial velocity in the direction of the positive

roll axis of the vehicle. The vehicle roll axis orientation and

delta velocity can be user specified or internally calculated to

produce a specified maneuver, i.e., plane change apogee raising,

etc. The equations for this model are

_2 = _I + lIB] "I

where:

_2

r_I

V2

V_1

is the final radius vector

is the initial radius vector

is the inertial velocity vector after the

impulsive maneuver

is the inertial velocity vector before the

impulsive maneuver

is the delta velocity magnitude, and

is the transformation from the geocentric

inertial system to the vehicle body coor-

dinate system.

(9.2-1)

(9.2-2)
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9.2.2 Analytical Finite Burn Maneuver

This model (Ref. 9-2) will propagate the vehicle state

vector through a burn maneuver by analytically solving the equations

of motion under certain simplifying assumptions. These assumptions

are:

a) Constant vehicle attitude during the burn maneuver,

b) Constant thrust and flowrate during the burn maneuver,

c) Spherical planet model with constant gravity during

the burn maneuver.

The equations of motion for these conditions are given by

-_ Z1 -i T ^
= -- -- T (9.2-3)

_I yl 3 + lIB] m

The acceleration vector is integrated to yield the velocity

vector after the burn maneuver

_2 = _i - _i_ + lIB] _ nm m I

The velocity vector is integrated to yield the zadius

vector after the burn maneuver

_2--7--i+_1 _t" 2"Yl - ....
where: m k ml ] ]

£I is the acceleration vector

T is the thrust magnitude

m is the current vehicle mass

is the vehicle mass rate of change

m I is the vehicle mass before the burn maneuver

_t is the maneuver burn time
A

T is the unit thrust vector in the body system

9.2.3 Numerically Integrated Finite Burn Maneuver

This model (Ref. 9-3) will simulate the burn maneuver by

numerically integrating the burn. The thrust and flowrate for this

model are user specified as time history tables. The thrust vector

is assumed to be coincident with the vehicle roll axis, with the

(9.2-4)

(9.2-5)

9.2-2



vehicle roll axis being oriented via user input or by the target-

ing algorithm based on user input. The equations of motion for this

model are given by

wilere :

a_l = _3 +[IB]'l_m T(t) _I + m(t)At

A
T (9.2-(_)

_G is the gravity acceleration

T(t) is the current table look=up value of thrust

_(t) is th'e current table look-up value of mass flowrate
A
T £s the unit thrust vector in the body system
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9.3 Attitude Modeling

9.3.1 Introduction

Attitude modeling plays a critical role in manedveranalysis

and design. The vehicle has a nominal attitude (for example, in-

ertially fixed or local vertical) during periods of cruise. It _en-

erally must be reoriented prior to each maneuver to align the

engines in the direction of the desired burn. Following the maneu-

ver the vehicle is generally reoriented to its cruise attitude.

The detailed analysis of attitude maneuversand the attitude

control system are not the responsibility of the GMAS;six-degree-

of-freedom analyses at this time are groundruled out of the study.

However much instructive information defining the size and direc-

tion of attitu,_e maneuvers can be computed from analytic equations.

There are two approaches possible in attitude maneuver model-

ing. The standard approach as used in a program such as POST (Ref.

9-4) develops a general targeting structure that incluJes attitude

system parameters directly as control parametera within the traget-

ing process. This is an extremely effective means of s_lulating

a wide variety of steering laws and simulation models. Such an

approach permits convenient simulation and targeting of maneuvers

in which thrusting occurs during attitude maneuvers. This capabil-

ity may eventually be necessary for shuttle era missions which

require repeated satellite 1_ransfers to shuttle-accessible orbits.

7

The significant orbital maneuvers might occur cver long

enough time intervals to require vehicle pitching during the thrust-

ing to reduce velocity losses.

The approach used in this section addresses the problem some-

what differently. It assumes that the thrust direction has been

computed by some means (analytic targeting, parametric scan, numer-

ical targeting) and the cruise attitude is known (input). The

approach then computes the Euler angles, angle rates _r body rates

and the attitude behavior during the orientation maneuvers. The

9.3-1



computations can then be performed in an independent module to the

standard maneuveranalysis and available on request. The formula-

tion still allows the reader to see the computational flow for the

more standard POSTapproach by reversing the computations and pro-

ceding from the attitude control parameters to the definition of the
AV direction.

The attitude of the spacecraft is conventionally specified

in terms of an appropriate set of Euler angles. Distinct combin-

ations of such Euler angles best simulate various attitude refer-

ence systems. The difference between these various Euler angle

combinations are the initial reference frame and the ordered se-

quence of rotations. A good range of attitude modeling capability

is represented by the following attitude models:

I) Inertial Euler angles

2) Relative Euler angles

3) Velocity relative angles

4) Vehicle body rates

These models are discussed in the following subsections.

9.3.2 Inertial Euler Angles

The inertial system is most convenient when considering

spacecraft employing inertial reference systems. The ordered iner-

tial Euler angles with respect to the inertial attitude reference

frame are defiz_ed below:

_C_ ECItAFT
" XB

YB ZR

Figure 9.3-1

Inertial Euler Angles

- Inertial roll angle. The

roll angle about the iner-

tial x-axis (ist rotation).

#I " Inertial yaw angle. The yaw

angle about the z-axis that

resulted from the 91 rota-

tion (2nd rotation).

81 - Inertial pitch angle. The

pitch angle about the y-axis

that resulted from the 9% &

#l rotations (3rd rotation).
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Denote the unit vectors defining the inertial refereqce frame by

(XR, YR, ZR) and those defining the desired maneuverdirection by

(XB, YB, ZB) with reference to the geocentric inertial coordinates.

Then the angles 41, ¢I, and eI are defined by

¢I = tan'I(RB23/RB22)

¢I = "sin'l(RB21 )

eI = tan-I(RB3!/RBII )

where [RB] is the matrix defining the rotation from the reference
frame to the body frame computedfrom

xB j

YR

_ZR.

(9.3-l)

(9.3-2)

9.3.3 Relative Euler Angles

The relative system is most convenient when analyzing vehicles

using local horizontal reference systems. The relative Euler angles

with respect to the geographic frame are given by:

xB

°

)/ YB

z B

CR " Relative yaw angle. The axl-
muth angle of xB axis measured
clockwise from the reference

direction (lst rotation).

eR - Relative pitch angle. The
elevation angle of xB axis
above the local horizon frame

(2nd rotation).

_R " Relative roll angle. The roll
angle about the xB axis (3rd

rot a tion).

Figure 9.3-2 Relative Euler Angle

The geographic frame is defined with respect to the inertial geo-

centric system by (XG, YG, ZG) where XG is in the local horizontal

plane and points north, the YG axis is in the local horizontal plane

and points east and ZG completes the right hand systeu.
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Then the angles (_R, _R, _R) are defined as

_R = Lan-I(GBI2/GBII )

0R ffi-sin'l(GBl3 )

_R = tan-I(GB23/GB33)

(9.3-3)

where [GB] is the matrix defining the rotation from the geographic

frame to the body frame defined by

!

IZ IIZZI[GB]=YB YG

where (XG, YG, ZG) are the unit vectors defining the geographic

axes relative to the inertial system.

9.3.4 Velocity Relative Angles

The velocity relative system is useful in developing intui-

tion about the geometry of the required maneuvers. The Euler angles

in this system are computed from:

(9.3-4)

Y_B zB _ al

v_

Figure 9.3-3

Velocity Relative Angles

_I " Velocity relative roll angle.
This angle is a rotation about

the inertial velocity vector

(lst rotation).

- Out of plane yaw angle. This

angle is a negative rotation
about the intemnediate z-axis

resulting from the roll angle

I (2nd rotation).

aS - Velocity relative pitch angle.
This angle is a positive rota-

tion (nose-up) when the vehi-

cle is in an upright attitude

(3rd rotation).

These angles amy be computed from

a = tan'I(VIxB/VIzB )

fl= tan'I(VIYB/_V2xB + V21yB)

(GB23 + sin_ siny I )_ffi tan'l _G-_22c_s _Zl-_in AzlCos71

(9.3-5)



where [GB] is the matrix transformation from the geographic frame

to the body frame, _IB is the inertial velocity in the body frame,

and AZI and 71 are the inertial velocity azimuth and flight path

angle.

9.3.5 Angle Rates

The actual reorientation of the spacecraft attitude from

the initial to the final orientation can be modeled by an appro-

priate set of piecewise linear attitude polynomials. In this type

of model the attitude rates are computed to satisfy the desired

change in each attitude angle.

The calculation of the attitude rates (¢, 0, _) required to

change the attitude from the initial orientation (¢i' 8i' _i) to

the desired orientation (_f, 8f," _f) in the (input) time periods

CAt#, At 8, _t_) are given by

_t_ _to _t_

The attitude during the maneuver is then computed as indicated in

Figure 9-4 and equations 49-131.

%

oi %

= _#i + _'(t'ti)

t%

Offi_ OiOf+ 0(t'ti)

: t_ _ t < ti+At _

: t > ti+At _

: ti _ t < ti+_t _

: t >ti+At _

%
=_i + _(t-ti) : ti -<t-< ti+At +

_f ti > ti+At 6

At_

Figure 9.3-4. Linear

Attitude Reorientation Model

(9.3-6)

(9.3-7)
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9.3.6 Vehicle Body Rates

Any of the above-described Euler rotations may be described

in terms of equivalent body rates. These rates are defined as

XB _x
- Roll body rate. The angular

rate about th_• XB-axis in

deg/sec.

_y - Pitch body rate. The angu-
lar rate about the YB-axis

in deg/sec.

_"z " Yaw body rate. The angular
rate about the ZB-axis in

deg/sec.

Figure 9.3-5. Body Rates

These rates may be computed from each of the referenced angular

systems as follows:

Inertial Eu]er AnKle Rates:

• q

_X] "_ICOS_ICOS_I _Isin_l

wyl = 81 " _Isin_l

_z] _IC°S #IsinSl + #IC°SSl

Relative Euler AnKle Rates:

wx _bR #Rsin0R

i =
Wy] RRCOS_& R + _Rsin_RcosO R

L Jzl _RC°S_RC°SSR- BRsin_

am

v/r

-u/r

__v tan _c
r

i

(9 3-8)

(_. 3-9)

where[GB] is the transformation matrix between the geographic and

the body frame; u and v are the north and east compenents of the

inertial velocity vector; r is the current geocentric radius vector

to the vehicle; and _c is the current geocentric latitude of the

vehicle.
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where

Velocity Relative Ankles:

'[ 1J
_x I al + dl & + (sin_) "

_y| = a 2 + d2_ +

I ,uz a3 + d3& + (cos_)

u]

a 1

a 2 = IGBI

J

a3

a

Vlrl " "_I sin_l

"u/rl + _I c°S_'l

v tan_
+_

rI I
n

_z = Cur - v_o)ICuz + v2)

"/I = ( "vI_ + _VI ) IVI_/VI2 - _2

Having computed the body rates the attitude kinematics during the

orientation maneuver may be computed. Define the quaternion as

q = e0 + e I i + e2j + e3k = (eO, e I , e 2, e3)

The quaternion rate equation is given by

I
_=TQ_ _

where

:e I

q = e0

e0

e0

e2 e3

e2 -e 3

"eI e3

eI "e2

(9.3-10)

(9.3-I[)

(9.3-12)

(9.3-13)

(9.3-14)

(9.3-15)

(9.3-16)

(9.3-17)
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The initial value of q for (9.3-16) is given by"

So = R (_:)* R(_:)* q(_:)

where

a(¢l) = cos--:+ sin -:i

R(#I); cos _ + sin _ k
01 01

_(01) = cos -_ + sin -_ j

The solution to (9.3-16) through 9.3-19) then yields the instantaneous

orientation of the body reference frame with respect to the inertial

frame:

m

eo2+el 2 -e22-e32

2(ele2-eoe 3)

2(ele3+eoe2 )

2(ele2+eoe3)

eo2-e12+e22-e32

2(e2e3-eoe I)

2(ele3-eoe2)

2(eoel+e2e3)

e02-e12-e22+e32

m

9.3.7 Translational Effects of Attitude Maneuvers

The effect of the Attitude Control System (ACS) maneuvers on

the vehicle state vector can be estimated in point mass trajectory

simulations by including a translational delta velocity per maneu-

ver along each axis in the vehicle body system. The c_Iculation of

the amount of translational delta velocity along each axis requires

the use of a program which can simulate the maneuver in six cegrees-

of-freedom. Once the translational delta velocity values arc known,

these delta velocities can be added along each vehicle axes at the

time of each orientation maneuver. This procedure requires that the

trajectory be interrupted the time of each orientatior maneuver in

order to add the estimated delta velocities due to the maneuver.

The translational delta velocities are a function of the net

thrust along each axis and the amount of time each thruster is on

during a maneuver, and the orientation of the vehicle before and

after the maneuver.

(9.3-18)

(9.3-19)

(9.3-20)
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Neglecting thruster misalignment angles, the reiationships

between the type of thruster and the delta velocity direction

would be as follows:

THRUSTER TYPE

ROLL

PITCH

YAW

AV DIRECTION ALONG

VEHICLE PITCH AND/OR YAW AXES

VEHICLE ROLL AXIS

VEHICLE ROLL AXIS

Given the initial vehicle orientation, final orientation,

the time required to reorient, and the net thrust for each type of

thruster over the reorientation time, the translational accelera-

tion can be approximated by

TNR P + TNRY]
+

where:

TNRP is the net thrust along the roll axi_ due to

• a pitch maneuver

TNR Y is the net thrust along the roll axis due to

a yaw maneuver

TNp R is the net thrust along the pitch axis due to

a roll maneuver

TNy R is the net thrust along the yaw axis due to

a roll maneuver

The reorientation maneuver would then be simulated by

specifying the start and end times el the maneuver, the initial

and final vehicle orientation angles and the appropriate net thrust

values for the maneuver. The maneuver would then be numerically

integrated to obtain the approximate translational effect of the

reorientation maneuver.

(9.:]-2i).
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9.4 Propulsion System Modeling

The problem of monitoring vehicle center of gravity shifts due

to propellant usage in certain tanks requires knowledge of the

spacecraft geometry and propulsion characteristics. The number,

location and orientation of tanks must be defined as well as the

center of gravity shift versus propellant usage. In certain sys-

tems, half of the tanks are inverted to produce cancelling center

of gravity shifts. If the tanks are the pressurlzed_ dlaphram type,

then the center of gravity shift in the tank can be _ssumed to be

along the centerline of the tank. If the propulsion system is a

blow-down type system, the tank pressure is a function of the gas

volume in the tank.

9.4.1 Thrust Modelin_

One method of modelling such a system is the orbit adjust

propulsion subsystem OAPS (Ref. 9-3). The following analysis is

taken from that reference.

The rate of change in gas volume VG and gas pressure PG are

given by the ideal gas low as follows

F
VG = _ go ISP

PG F

PG = -k
VG Ogo ISP

where

p is the propellant density

k is the ratio of specific heats for the pressurant gas

PG is the gas pressure

VG is the gas volume

The propellant density can be described as a polynomial function of

propellant temperature by

3 i-I

P= _ d i TF
i=l

where di is the ith coefficient of the polynomial

9 "9- i

(9.4-1)

(9.4-2)

(9.4-3)



TF is the propellant temperature in degrees Rankine

The thrust (F) and specific impulae (Isp) are given as poly-

nomial functions of propellant pressure (Pp)

5 i-i
F ffi _ ai Pp

i=l

5

ppi -I= - C iISp i=l

where

ai are the thrust polynomial coefficients

Ci are the specific impulse polynomial coefficients

the propellant pressure in the thrust chamber is computed as

Pp = (I - 8Pv)(P G - BeD)

where

8PV is a percentage pressure drop due to valves in the

propellant line between the tank ana the thrust

chamber

_D is the pressure difference across the tank disphram.

The pressure difference 8P D is given as a constant or as a

polynomial function of propellant mass depending on the percentage

of propellant usage as

2 Mp_ )8PD = Z C£( I -
i _l MP_o

where

Ci

Mp,/

MP'/O

i-1

are polynomial coefficients which are a function
of AMP

is the current propellant mass in the nth tank

is the initial propellant mass in the nth tank

The acceleration due to the orbit adjust propulsion subsys-

tem is given by

F A

(9.4-4)

(9.4-5)

(9.4-6)

(9.4-7)

F (9.4-8)
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where

9.4.2

M is the total spacecraft mass
is the unit vector defining the thrust axis in the

vehicle body system.

Mass Properties Modeling

The center of mass of the spacecraft is calculated based on

the sunm_ation of the individual centers of mass of each tank and

the spacecraft with no propellant as follows (Ref. 9-5):

6
E

C = i=l Mp,IC_ + MO
- M

where

Mp,l is the propellant mass in the nth tank

}_ is the spacecraft weight with no propellant

M is the current total mass of the spacecraft

_0 is the spacecraft center of mass with no

propellant

The individual tank center of mass is assumed to lie on tile

tank centerline. The tank centerline orientation with respect to

3nd _ .the body axis is given by the tank mounting angles @n n

The individual tank center of mass is then given by

where

/cos_ n. cOS_n_

_c°S_n sin_n7
Cm = C_nO + CLn --singn

C_n0

CL n

is the origin of the tank coordinate system in

vehicle body coordinates

is the tank center of mass in the tank coordin-

ates

The tanh mounting angles are illustrated as follows

(L).4-_))

(9.4-10)
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Given the composite center of mass of the spacecraft as a

function of the propellant used in each tank, center of mass con-

trol logic can be implemented. This implementation consists of

investigating the center of mass shfft of the spacecraft assuming

each tank is to be used for the maneuver in turn. The center of

mass is then controlled by selecting the tank for the maneuver which

minimizes the center of mass shift. The tank selection logic also

has certain back-up options. For example, if _ore than one tank

would satisfy '_he center of mass shift requirements, the tank with

the most propellant is selected. If no tanks satisfy the require-

ment, the tank which minimizes the center of mass shift is selected.

Tanks that have depleted all of their propellant or tal_ks that have

valve failures are not considered for a given maneuver.
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I0. ANALYTIC TARGETING

I0.I Introduction

Analytic targeting refers to the computation of closed-form

solutions for maneuvers satisfying desired orbital changes using an

impulsive approximation for the maneuver itself. The closed form sol-

ution thereby generated yeilds a simple and reliable approximation for

most orbital maneuvers. As a result, impulsive modeling has received

widespread application in preflight mission planning as well as =eal-

time mission support. In thise applications, the Impulsive models are

typically used to provide rapid estimates of maneuver parametrlcs.

They also furnish effective initial iterates for parametric scan or

numerical targeting and optimization for more detailed simulation of

the maneuver.

Orbital maneuvers are conveniently categorized into two classes

of maneuvers. Orbit change maneuvers will refer to programmed or sche-

duled orbit changes such as orbit insertion, orbit transfer, or routine

plane change maneuvers. Orbitkeeplng maneuvers will refer to maneuvers

required to maintain some orbital characteristic _n the presence of

perturbations. Orbitkeeping maneuvers include such maneuvers as syn-

chronous or sun-synchronous orbit stationkeeping.

This chapter describes the analytic targeting of both kinds of

Orbital maneuvers. A section is devoted to each specific maneuver

within the two general classes so that later additions, deletions, or

°

modlfications tD this chapter may be easily implemented.

these maneuvers is provided below:

Orbit Change Maneuvers

( io. 2)

(lo.3)

( lO. 4)

(lO.5)

( lO. 6)

(io.7)

(10.8)

A listing of

In_ection frcm Parking Orbit

Insertion from Transfer Orbit (Apogee Maneuver)

Station AcquisiO on

Single Impulse Plane Change

Two Impulse Plane Change

Fixed Location In-Plane Maneuvers

Variable Location In-Pla_'_Maneuvera

I0. I-I



Orbltkeeping Maneuvers

(_o.9)

(lo. _o)

(Io._i)

(lo.lZ)

Orbit Trims

Synchronous Stationkeeplng

Sun-Synchronous S tationkeeping

Perigee Altitude Maintenance

Two coordinate systems will be used repeatedly in this chapter.

These coordinate systems were described in detail in Section 5.2.5.

Both are based on the satellite orbit plane.

The XoP-YoP-ZOp frame will be denoted by its briefer and more

descriptive title, the RTN system where

is directed along the satellite position vector (XOp)

is directed in the orbit plane normal to R (YO_)

is defined by X x r (Zop)

The second frame is the Xp-Yp-Zp which for simplicity will be

called the PQN frame where

is directed toward perigee (Xp)

is in the orbit plane normal to P (Yp)

is defined by _ x _ (Zp

These frames are illustrated in Figure I0.I-I below.

Q(Yp)

T(YoF) _ .___..

i/ \ .. ,

/ \

-7 --"_
\ ,

R(Xop)

/

q P(XP

,\

_._ .._/£he N-axis (=Zop =Zp) is out

of page toward viewer.

Figure 10.1-1. Description of RTN

and PQN Frames
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10.2 Injection from Parking Orbit

The injection from the parking orbit to the target or transfer

orbit is discussed in detail in Chapter 8 because this maneuver is

intimately tied to the launch phase of the mission. Generally the

launch time and azimuth is selected on the basis of optimizingthe

transfer orbit injection and target orbit insertion. Apparently the

operational targeting and implementation of this maneuver is not the

responsibility of the Mission Support Computing and Analysis Division.

For completeness however the impulsive targeting of this maneuver will

be briefly summarized here.

The parking orbit is characterized by the inclination ip, the

longitude of the a_cendlng mode Qp, and the circular radius Rp. De-

fine the radius vector to the desired transfer orbit apoBee by _A"

It is assumed that the launch analysis phase has selected the launch

time and azimuth to insure that _ lies in the parking orbit plane.

Then the argument of the latitude of the injection point (angle in the

parking orbit from the ascending node to the injection point) is given

by
A

cos UI = -L • R_A/R A

A
sin U I =(-L x R_A)- _/_

• A

where N = (sin Qp sin ip, -cos Dp sin ip,

A

-_ L = (cos _p, sin Op, O)

The _V is given by

• _ " +Rp

where Q is defined by Figure lO.l-l.

0 \T"U I _" 360

cos ip)

( lO. 2-t)

( lo. 2-2)

(10.2-3)
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10.3 ApogeeManeuver

The analysis of the apogee maneuver has been the subject of much

repeated effort at GSFC. Programs for the analysis of the targeting

of this maneuver have included FUSIT2, FUSITS, and FUSIT6 (Reference

10.3-1), FUSIT7 (Reference 10.3-2), RAEMOT (Reference 10.3-1)and

CAMP01 (Reference 10.3-3). Currently, investigations are underway for

the CTS (Reference 10.3-4) and it may be necessary to update this sec-

tion when those analyses are completed.

The mathematical description of the apogee maneuver =argetlng

problem is as follows. The elements of the transfer orbit are known
l

and designated by (aT, e_r, iT, OT, ,T). The elements of the desired

near-synchronous orbit are given as (as, es, is, NS, ,S). The solid

rocket motor has _ fixed _V ,:apability denoted as _V B. The problem is

tQ determine the A_ direction U so that when the engine is fired the

resulting orbit is acceptable and as close to the desired orbit as pos-

sible.

Acceptability in this context is a somewhat vague term as it may

mean some complicated combination of constraints including drift time,

observability by certain stations at certain times, 'shadowing, etc.

Thus the actual targeting of the apogee maneuver will undoubtedly in-

volve some post-analytic targeting refinement by either the parametric

s_an or optimization modules. Therefore the approach described below

should generate an acceptable solution but need not consider all the

constraints involved in those later refinements. The approach discussed

w_s suggested by the approach taken by Novak of Reference !0.3-4 but

differs substantially from the solution. Figure 10.3-1, taken from Ref-

erence 10.3-4, is an extremely effective illustration of the apogee

maneuver problem.

The algoritl_ presented below determines in closed form the direc-

tion of the solid rocket motor burn to

(1) Acquire the desired plane and drift rate and minimize

eccentricity error.

10.3-1



(2) If (I) is not possible, acquire the desired plane and min-
imize drift rate error.

(3) If (2) is not possible, minimize the plane error.

The input therefore is the desired drift orbit inclination i, longitude

of ascending node n, semimajor axis a and eccentricity e; the solid

rocket motor fixed capability AV; and the transfer orbit defined by a

position _t and velocity _t" The output is the optimal burn direction

_v"

The transfer crblt is defined by computing the angular momentum

and eccentricity vectors

St = "_t/rt " _t x Vt/_
!

Tile normal to the desired drift orbit plane is given by

_n = (sini sinO, -sini cosO, cosi)

The line of relative modes between the transfer plane and the drift

orbit plane is given by

--r !

Then the radius at the intersection point is

Ht2

_ r = _( l+et.. _Ur)

The velocity vector on the transfer orbit at the intersection _int

is

_ _) _t X (_t +_ )
I

The RTN system is established in the initial orbit plane with the

R axis coincident with the U_r axis.
A
R=U r
A
N -n
A 7_ ^
T=NxR

The transfo.rmation from the inertial to the RTN frame is then

given by _"

. 10.3-2

(to.3-l)

(lO.3-2)

(10.3-3)

(10.3-4)

(I0.3-5)

(I0.3-6)

(10.3-7)



Figure 10.3-1. lllustratlon of Apogee Maneuver Burr Geometry

A
T
>

NOTE: RT plane is desired

drift orbit plane.

Figure 10.3-2. Construction of RTN System for Problem

T

A
R

VRT

VRT

Figure I0.3-3. Velocity Parameters in RT Plane
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]
A I

_R_ = i T ,

! ^ i
N

(10.3-8)

The out-of-plane component of the velocity vector at the injec-

tion point is given by

VN = V • NA (10.3-9)

The first logical branch point depends on the relatlve size of VN and

V. If IVnl> AV the sphere of possible velocities following the

solid rocket motor burn does not intersect the desired orbit plane.

In this case the _V direction should be directed toward the plane to

minimize the planar error. Mathematically

 v.<IvNI c 03-10>
A

U__V = (-sign VN) N (10.3-11)

If _V> IVN I the sphere does intersect the desired plane in a circle

(Figure 10.3-3). The radius of that circle is given by

.WRT ,, (,W 2 - V_) ½> 0 (10.3-12)

Denote the length of the projection of _ in the RT plane by

VKT , and its polar angle by 8 0 where
I

" (VR2 VT2)_VET = +

i

cOSgo = VR sin6 o ffi VT

(10.3-13)

Then the equation of the circle defining possible drift orbit
!

velocities lying in the desired plane is given by (r,8) where

, - oo,C U÷cv  0

Now the desired velocity magnitude can be computed from the

desired semimajor axis (equivalently, the drift rate) from the energy

(lO.3-14)
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equation

v* =[.( r -

The intersection of the circle r = V_ with the desired plane

circle (10.3-14) then defines velocity orientations that acquire both

the desired plane and drift rate.

(10.3-15)

If there are single or no intersections, the velocity directions

in the RT frame are given as follows

VRT< _VaT:

VRT>AVRT: V*>VRT +IAVRT O - 0 o

V*_ VRT -.AVRT O = Oo

V*>VRT + AVRT

_V*_ VRT - VRT

Then the optimal AV direction is given by

T

-urn= cR_ _IAv

where

_VRT cos0 1
&VRT N " IAVRT sin0

e = 00 + 180 °

(I0.3-16)

(10.3-t7)

(1.0.3-18)

If the conditions (10.3-16) are not satisfied there are two solu-

tions which acquire the proper plane and the correct drift rate. In
!

this case the solution is chosen which minimizes the eccentricity error.

The two solutions of the simultaneous equations r = V* (10.3-15)

and (10.3-14) can be written as

v*2 -2v*VRTcosC0-0o>_V_z-_v_ = 0 (lO3-19>

Solving for the values of 0,

= 00 _ c°s'l 2VRT V* (10.3-20)

Then Icos(O'Oo) l<'l since the exclusion of conditions (10.3-16) requires
i |

I

.IVzz"_VRTI< _< VRT+ AV_T (10.3-21)

Then the ambiguity in sign may be reso1_ed by selecting the solution

t
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that lies closest to the desired eccentricity.

the complement of the flight path angle at r.

angle is a function of the desired eccentricity by the relation

7 fficos "I (_a (l-e2))

r VRT
i i

Thus the sign of (10.3-20) is selected to minimize the error[Y-e l.

Note that _ represents

The desired flight path

( lO. 3-22)

i
.j
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10.5 Plane Change

The plane change maneuver described below involves simply a

plane change so that no other elements but inclination i aod longitud e

of ascending node are affected. The analysis of a single maneuver

that obtains a plane change and affeqts other elements can be made by

computing the plane change Impulse_p and the subsequent in-plane

impulse AV I (see next section) and adding them together.

Let the elements of the initial orbit be denoted (al,el,il,n I,

wi) and the desired planar orientation by (if,hE). The normals to

the two planes are then given'by

. A
N i = (sin_ i sini i, -cosQ i sini i, cosii)

A

Nf = (sinai sinif, -cosOf sinif, cosif)

(i0.5-l)

(10.5-z)

Define the line of relative nodes by

where the sign is chosen to force Lz > 0.
A

(10.5-3), then L is set equal to

A

L = (cosn i, sin_ i, 0)

(10.5-3)

If L z = 0 as ccmputed from

(to.5-4)

The true anomaly cf the first intersection point (there are obviously

two points of intersection) on the initial orbit is given by

• A A

cosf I = P • L

,,^ 0.<fl<360°
slnf I

(lO.5-s)

where _and _ are computed from the elements of the initial orbit as

discussed in Section I0.I.

The RTN system is established in the initial orbital plane with

the R axis coincident with the L-axls:

^
A=_ i A
T=NxR

(10.5-6)

The initial velocity in the RTN system is given by
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.where

= (v i sial v i cosy, O)

a(1-e 2)

ri = Z+e cosf i

( 1o. 5-7)

( 1o. 5-8)

where

vi = V',,<(2r:[.1._.-:r-)

( e si_,-,f)7i = tan'l l+e cosf

The final velocity in the RTN system is then

RTN RTN
xf = "R Xi

jI 0 0

_R = cos xi -sinAi

sina i cosA i

and where as indicated by Figure 10.5-1 the following conditions are

imposed

I
A i = Xf - ii if (vi) z > 0

= ii - if if (Vl)z < 0

(I0.5-9)

(i0.5-10)

(1o.5-11)

(10.5-12)

(i0.5-13)

Fiture 10.5-1. Geometry for First Solution

The velocity increment in the RTN frame is then

AvRTN RTN RTN . vRiTN-- =_ "zl. =(">itx)

This may be simplified to yield

A_.y.vRTN = v i cos )'(cos_i-I

i sin 7 sina i

( 1o. 5-14)

(10.5-15)

I0.5 o2



The inertial velocity increment is then given by

Av I T AvRTN
-- = _R_ (I0.5-16)

The second sciution which occurs in the southern hemisphere is

A
determined by reversing the sign of L in (i0.5-4). The true anomaly

of the intersection polnt is given by

f2 = fl + 180° (I0.5-17)

The computation of the Av for this solution then proceeds as

above.

/.

Figure 10.5-2. Geometry of Second Solution
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10.6 Two-Impulse Plane Change

The MAESTRO program development (Reference I0.6-l) Identified an excel-

lent technlque for the closed°form optimal solution to the two-lmputse 180 °

nonplanar transfer. This capability, originally derived by T. Sun (Reference

10.6-2) should be available in the GMAS. Sun's method determines the optimal

two impulse 180 ° transfer between non-coplanar orbits. Since a 180 ° transfer

is specified, the first impulse must be applied at the Inter_ection of the

initial and final orbit planes. Thus, the angle between the initial and final

orbit planes and the position on the initial orbit where the msneuver Is made

can be obtained from the spherical trigometric relationships, See Figure below.

The followi_g development is taken directly from Reference 10.6-I.

Z

y
Li: t._t *.

I,ai_tal

/ /_"

j- 1

/°, /'
i<

o_'i,it

¥

The angle from the reference plane to the common line of nodes in the initial

orbit, X , can be determined from the input initial true anamoly, f, and the

argument of the ascending node of the initial orbit as,

k= f +_ _ (LO.6-I)
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Thc_, t:c :,. 1._,. :_ct,.', e,_..,_. tht ....._,,o orbit pl:mcs, a

,..'::f',

i:_: :_.

*I d

.

-,-'-_ id - ii

A_

, can be d¢ictu::i':':,t fre:u,

(I0.6-2)
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t

_?_ • the a::,.l,; 6"o,:t the r,:f,:rence pl::::c ',, tim c,"' '_:,'." l:::e ef

r:i-!,_'s in the i'il::tl orbit plane.
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whcro !_, is the gr_\i':r,_ .' ,-onst;u;t

r, i:; U_c r,:d:,u:¢ _.! X
,,I.

"V \' :tZO the r:ltli:ll :_P,l l:-n_.-, ..... :" : "'. " ; _;,_ ',[,,:

T j ,..... ._
hIiLi,ll orbit relative to locvi xclccikv ( \'-:- _..!-. /r )

n is rjr. L

T'::v _ "t'_.,'.'-.l a.K,,o i:_ somowh'dc ,':i w,l)iil'i_l from .....<.... L'':, cqu.'_i,m o.,"_":'" ',,;c _ii::d olbit

.... tl , i. ,_ ,,_

V = 0
r2

VT2 := 1.
(t0.6-4)

, _., _--_:.-
:\\'1 l I" I "% --- co-, o;, 4 --

" ,i!-I _,_ t

,,i_ '_ _.i/::n VT t '-'u
A V V'L" " - _ co:_ ,,, + _-

t n_" • l u'-l.

" --- 1 -_._,,u_-" " T1 - _ ,r'-I Vtl _:"t :_--f"

_\\: f,v-- .,. '2
o,.:. ,,--..-t

(10.6-5)

,'" '" AV and AV
l 2

...... ,it_ ,, . ( t',5.

• "1 _ " *" " .... ' :'OCOP.d [t'i:lldO)lOlc thC 1113%t'i{. t'.'-4 ,.'.'." ii'O _.,t:,_ : :,_:

"['h¢" di:'_,ct':oa tl_ ,_" i,_.:ml:_eS :Ire opplied can t_c Ct lc:'l:,i:,,t.d l:,,-no:iv:: _bc "ollowin._

1"C I:1.10,'i_ ,: It)S o

"\\;lit ": VIITJ--VR1

A\;NI :: -VTI :fin w l
(10.b-6)

.XV,r 1 = V,.I,TL - VTI cos 0_

The suc(,,:.d [:ira i:-: ,_c[crlnitx¢(! in a similar maimer as

AVr2 = V -1(2 ¥RT2

:.-: - r sill
_'VN2 _ T2 t02 (10.6-7)

,_VT2 = V cos -2"2 W2 VTT2
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In ',!,_. ::'.o-,-e r.:. ti _,.; .!:e , ,,:npop.:_c '. _ of _¢1,,3cit3" nre defined :_.¢ io!lov,s,

V !Ii, '2

VTt,2

"i ."

v T'f!,2

V
ll't'l, '2

r:u]ialeompm'ent of vel,._city of the

in_:in! or fir.:d o_bit.

'!'r::ns,,ers:11 COml,,)nent of velocity of ti,¢; :.n:,tiM ::,r

!iL::., ¢.uiJit, i:t the init:,al of final oc!At l.qau,,,

'['U:':_:.:','et':.._",] cot:_l_Ol_ellt nf. x'clocitv of th., :.n:._':d or

iLa,'] ovbi_ writ:en in the tr;tm;fer :,.q:me.

l_:_:i:_.! uou',pou,-_nt _,[ velocity of tl-," tvan-_:'r orbi" :_t

i,':.,t.:l ::,',:l final ,,cldt cro:_sings.

All c ,c,r'_ ..... r.. ,.:" x_:iocl_.v c:_'cp_, the r-tdi:tl cornpor_cnts of th- tr.t:-._fl'," o"},it in

• eqns (10.6-6 and 7) are fixed by specifying the initial and final orbits, The

radial component of velocity is determined from the condition that the total

trim velocity is to be minimized. The total trim velocity is

'2 2 2
.!- ,_ - = +

AV -: AV 1 ,_\., "_'AV3.. 1 + _\'-- N (Vr'rl Vrl)

I 2 o 2

-_- *',_.V.,....T2 4- A VN2- (V..2, - VrT:. :)

(10.6-8)

Also,

_ r'i'l rT2

Vr2 - 0

(10.6-9)

since a 130 ° t,.'ausfer is s_._cclfied and the final orbit is to ::e cicc_,htr. Now, the

parti:.i dc:-ix:_tive of t'_e t,.'iz_ w.,i,;city with respect to VrT 1 c:_n k,c written :_s,

Of

._ ,_.V V - V _= ._2:'_F _.... _.__'1__ , Vrq'l

_V
rT1 AV 1 /_V 2

AV,, _,:'IZl._
VrT I =

z_V I

= 0

(10.6-10)



"Yi_e cc p;, ::t- "ff th, trim velocity obtainud [ron_ eqns (10.6-6, 7, b 10) describe

the t',':., .'. _,,_. ;+",., ",viii: rc:_p,>ct to the tr:m:.;(_zr hi:m,:., The t i'i_v, vc_,_ci_v, vcc',ol" in

t'.-e s::.." ,',"',l'd[ll:i|O ':V.qU2II1 Of 111,2initial ocbit is ol,_.tt,.,_'.... ' j,r._'u.:.'h., a _:.,_tc_.''_Evler

:!!_.,.j_e _',.i-_Li,;a piclut'cd in the [i.;ur, 2 hulo,v.

Z

z Y .

hi tho l'i':tlro above, x co_'re-'pond_; to the radial directi,',.',, v W ti_c tra_:;vcrsal

,'.:.t',"CLi,"F _./l'...[ 7 [0 t}:O. :_)l'.rl3;ll dil'ection.

"tkc. :,,_::9.flar cloy.:,: .t:; oL t'-,c reference m'ldL defiue the I.?.llcr _nF, lc:;. '_hu:; Lhe

i'.'.u',,_farm::.tlon rut',v, ,.i'c x, y, z _vstem to the X, Y, "" u:.,:_tcm i:,

co:i 5 cos f_

'con i 'ui',_ ;)6in t_

co,', 5 sin

_co:_ i cos Dsin

-:dn 6 cos ¢1

-cos i ,_in _cos _,b

-sin _) sin _.

_cos i cos f.? cos

sia i coa Ib sin i sin ¢ cow i _

X

( y (lO.6-tl)

where_b = f+_o

The above cquatior, is used to tran.;form the trim xcloc, itv comp,me:_ts from an orbit

plane coordinate t.y,_;tcm !,o the sy:.tum of the ret'creuce orbit,

Optimum I nel ip,; _' io,', of Ih,, T ,'a_ fe r 1"1:_ne

The conmhon for tl.e opthu:tl oricntati,_n o[ the tr.ms,,.t pl3ne is expressed by

2 t/2

(1-2,a2'" .'.,'+P2).,
si.,l b._2 = - n .>

,k+pl"
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't i',[./,'1 _k

",,.here PI = \ r'l -i-)"I /

' , ,. \:/z

s> =_, -:;:,::.:/

.............. ., _' co:.dlfion

_2 ""l

1

Vq- 1

t:_hls a _:,,to[ e,iu-:tio.:;;'.'.':::,_'hc._,::be .._qved roy (:,I o_:(x_'2to ,ic.l,lthe ol,t:iuutn

•' .....,!:.,..,,.:C1::2 ....['.'_'l:''_'e.%"::.,,:ol):t;,_:x:_toeqn (10.6-12) resulted in a sixth

or'de.:"l?,_)I:,_:o:,:::IIi;:si::::J. T.,e e,,:t:ttinnwas :;oI:(::ILu:,ucci_;tlly itIorJ,'r t,)nvohl

¢.hcci:t::bcv_otuo t0"')"c)l":-_7 ' " ",,':,. ,,,_ :::,ixt::(,cd,..c,'q:,::ii<m. ..',, .,cx_,.,'--I:':,_::.:.,::,:roc:'du:'e

" , . ' " " "' :;olullo,: t,.) eqn (10.6-13). Sun, in the reference states

' "'_.... the t._!:o[ lin(li,_,._:.:ul',:',) : .,),,,.L,:,".":','ith(,'e

::,,'.\:o:_-l:._:_hL'o:t_:...t::o,[:.q::'.)t:'"quit'ed.

• _ O
"L'}LC'opll:::Ut:::: L, +.....,":',-:i'e,"::..IuLic;:dl.-.cuss,_'.la!>.av:,d..l:::';,:'t::,'.-.t;.e :.:;_).:ou\e r t,>

to a':\ spec:f;(" _'.q : o.: _':,,:._,:taI :),1,',...

"kh::s, it is ,:ece:_-:,:',,'.<,.... ........,,_. fir:st_..c:u,:i):othe po._ltion o:: ll:ein£;!.'lo:':,iLto ....,".. ' '

l,.::!::_:u\-e:'|:;:l_,'c ....,-, 1_;:Ae.l._,%_._;tt:'ln:['(::,uirct::ol:t.. . ...,,":...,....,_:: ?:>.-£._1o,:_:::the

5:'i:iTdot'l_,itis dc:er::..i::._'dby : so:_rch of tl'c e):tire orbit. .k :_::!f-i;,tc:'v::l,,,_'_atzon"

i5 i)__,:'d[o lj[).,.|'"[[:L' _,QfJ.!L)_ l'-l:::lllHl.lifl:Hid lI))'. [:O_;[[[O!l LI,.C(.,'_,' I i.%"_ll(_'JII[I'J:>,IL3::C')f;.tI!:'ilC 1()(;,'_{

]::_nil;:u:n$.
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10.7 Fixed Location In-Plane Maneuvers

Fixed location maneuvers refer to maneuvers that are performed

at a specific point within the initial orbit. Such maneuvers as peri-

gee altitude adjustment performed at the apogee point or apogee alti-

tude adjustment performed at perigee are included in this classifica-

tion. _ese maneuvers are computationally much simpler than the in-

plane maneuvers having unknown locations discussed in the next section

(lo.8).

10.7.1

or lowering illustrated in Figure 10.7-I.

Apogee Maneuvers

The primary In-plane apogee maneuvers involve perigee raising

The most convenient form

Figure i0,7-I. Perigee Adjustment at Apogee

of the _V equations employs directly the initial perigee radius rpi,

the desired final perigee altitude rpf, and the initial apogee radius

ra. The AV magnitude is then given by

= -2 [ rpf rpiV)pf + ra rpi + ra

The direction is given by

A A
_v = ±q

where the negative slgn is used for perlgee raising and the positive

sign for perigee lowering.

10.7.2 Perigee Maneuvers

The principle In-plane plane perigee maneuvers involve apogee

_Ititudo _,dJustment. The equations for this maneuver are as follows.

(io.7-!)

(10.7-2)
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Figure 10.7-2. Apogee Adjustment at Perigee

The AV magnitude is given by

AVp = 2 rai
rai + rp

(lO.7 -3)

The direction is given by

where the positive sign is used for apogee raising and the negative

sign is used for apogee lowering.



[0.9 Orbit Trims

Small single impulsive maneuversare those that allow the use

of perturbation approximations. These small impulse models are gen-

erally quite usefal for maneuvers such as minor orbit adjustment or

orbitkeeping. The strategies used to determine the desired orbit

changes are discussed in more detail in Sections [0.I0 snd following.

The most useful form of the planetary equations for impulsive

maneuver analysis is the Gauss form (Reference 10.9). For maneuver

analysis the force components FR, FT, F N in the radial, _angential

(normal to radius), and normal directions are replaced by the approx-

imations _t _VR' AVT' AVN) yielding the equations

2 P
._a = ,_VT)n _ (e sinf AVR + --r

na

r cosU

_i na2 _--_ _VN

r sinU

A_ = na 2 _ sini _VN

A_ = _ cdsf _VR + (i +_)sinf aV + 2sin 2 _A_
nae

e2

a_ i + __+ 2 _ sin e _Afl- er= - na--_AVR

where f and E are the true and eccentric anomalies respectively,

n = _3,

p = a(l - e2) ,

u _ f + @ - _ = f + u, and

is the planets mean longitude at the instant from which

time is measured given by

_ W - nT

(_o.9-i)

(I0.9-2)

Ref. 10.9: A.E. Roy, "The Foundations of Astrodynamics," The

McMillan Co., New York, 1965.
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The equation (10.9-1) cnn be used to compute combination

orbital corrections as well as single element corrections. Thus

writing the vector of elements as E the equation (I0.9-I) can be

written as

(to.9-3)

This equation then allows the exact targeting of up to three

components of E or the least-squares solution for more than three

components of E.

10.9-2
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I0.I0 Synchronous Stationkeeping

It is normally desired that Synchronous satellites be kept

"on-statlon" at a given longitude. Even if an equatorial synchronous

satellite is placed perfectly at the desired longitude with no initial

drift rate, the action of various perturbations upon the satellite

orbit will eventually cause it to drift away from that station. The

normal method of stationkeeping is to choose two bounding longitudes,

one on either side of the desired station longitude, and then to use

maneuvers whenever it is necessary to remain between the boundaries.

Due to the accelerations of the tesseral harmonics and the lunl-solar

perturbations, the satellite is allowed to drift until it reaches the

boundary toward which the net perturbative acceleration is directed.

At this point a maneuver is performed which changes the seml-major

axis of the orbit so that the drift rate is in the opposite direction,

toward the other bound. The maneuver is sized so that the drift rate

will decrease to zero Just as the other bound is reached. The contin-

ued perturbative acceleration will then reverse the drift and eventually

return the satellite to the first bound, whereupon another maneuver is

performed to begin the cycle again.

By only considering a simple approximation to the tesseral

accelerations, an analytic technique of cslcclating ststionkeeping

maneuvers is described in the RQUEST program documentation (Reference

IO-AA). This program was written to provide a "qulck-look" program

for calculations connected with controlling the ATS-I and ATS-3 satellites,

to be used as an aid in planning and to provide weekly status reports

for the satellites. The equations of this method are given below in

Section 10.10.1. A much more complete analytic theory including the

accelerations of both the tesseral harmonics and the lunl-solar effects

has been published recently by Kamel (Reference IO-BB). The equations

required for this method are summarized in Section 10.10.2 below.

lO. lO.l Approximate Tesseral Method

The RQUEST program (Reference IO-AA) models the effect of

the tesseral accelerations as a simple drift in longitude of the form

I0. I0-1



= -A sin 2A (I0.I0-I)

where A is the station longitude measured in radlans from the nearest

minor axis, and A is given as (-72 =2) (1/6.61)2 (1.81 x 10 -6 ) =

-2.944 x 10 -5 radians/day 2. The minor axes or stable equilibrium

points (from which the satellite will not drift if placed there with

no drift rate) are located according to Reference 10-AA at 108 degrees

W and 288 degrees W. The points of unstable equilibrium are at 18

degrees W and 198 degrees W. The location of these four equilibrium

points as determined by Kamel in Reference 10-BB are different by as

much as seven degrees and are not exactly symmetrically located.

The four equilibrium points fprm the boundaries of four

zones in each of which the direction of the drift acceleration is

opposite that of the zones on either side of it. It Is assumed that

in the stationkeeping mode all of the satellite motion (i.e., both

boundaries) will be within one zone. A stationkeeplng maneuver is

calculated given a time, the satellite initial longitude and drift

rate and the boundin_ longitudes. It is assumed that if the initial

drift is opposite to the tesseral acceleration, that the satellite

drift rate will be reduced to zero approximately at the boundary

toward which it is drifting. For this case, the following calculations

aremade

_f = 1/2 cos "I (cos 2 A i - _2/A) (10.10-2)

2( Af- Ai) I&t I = (I0.I0-3)

(I0.I0-5)
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0

AT = At I + _t 2 (I0.I0-6)

(10.10-7)

where

_f is the longitude at which the drift rate becomes zero.

is the input satellite longitude.

_i is the input drift rate.

At I is the time taken to reach _f.

_i is the drift rate at BOUND1.

_I is the average acceleration between BOUND1 and _ f.

_f is the distance between BOUNDI and _f.

_t 2 is the time taken to drift from _f to BOUNDI.

T is the time from the initial time to BOUNDI.

•_ M is the change in drift rate which the maneuver

must produce.

oe

_2 is the average acceleration between BOUND1 and BOUND2.

/_ is the distance between BOUNDI and BOUND2.

If the initial drift rate is in the same direction as the

tesseral acceleration and the satellite is between BOUND1 and BOUND2,

the following calculations are made

1/2V2 <toI0-8>
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_A _ _i+ _ (10.10-9)

O

(10.I0-I0)

'_,M = +_ (lO.lO-ll)

where

Ot

_3 Is the average acceleration between _i and BOUND1.

_S is the distance between _I and BOUND1.

_A is the average velocity between _i and BOUND1.

At is the time it takes to drift to BOUNDI.

_M Is the drift rate of BOUND1.

If the satellite has drifted past BOUNDI in the direction of the

tesseral acceleration, a maneuver can be performed at the Initial time.

In both this case and the previous case where the satellite drifts to

BOUND1 before performing the maneuver, the maneuver is calculated by

AM--<:i.+'/'2 (I0.I0-12)

where

@

_M is the drift rate at the maneuver (either BOUNDI

%1).
og

_4 Is the average acceleration between the maneuver a

end BOUND2.

_M is the dlstence between BOUND2 and the maneuver

point.
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Since _M is calculated in radians/day, it is converted to it/sac by

AV ffi (9.34) (180/'1T) _M (10.10-13)

where _V is the velocity change in ft/sec.

10.10.2

In reference 10-BB, Kamll develops the equations of motion

of the synchronous satellite in terms of the deviation in longitude

around the nominal satellite station _ S" The solution for the

drift cycle initial conditions and stationkeeping requirements is

found first due to tesseral harmonics only and then due to the inclu-

sion of luni-solar effects,

10.10.2.1 Solution Due to Teaseral Harmonica

As noted in Section I0.i0.i, the equilibrium points as

determined by Kamel are located at slightly different points than

in Reference IO-AA. The stable points are located at 76 degrees and

258 degrees (or 102 degrees W and 284 degrees W) and the unstable

equilibrium points are at 164 degrees and 349 degrees (or II degrees W

and 196 degrees W). These points are defined by the zeros of the G I

function given below and will of course be functions of the values

used for the various harmonics.

In the presence of only harmonic accelerations the drift

cycle is independent of epoch and repeats itself when a maneuver is

performed once each cycle. In this case, it is normally termed the

limit cycle. To maintain the satellite within the required tolerance

_o ) around the nominal station longitude _S' the optimal station-

keeping strategy locates the satellite at one boundary of the tolerance

bend (_- _o or BOUND1 in the nomenclature of Section 10.10.1) with
e

the initial drift rate _o which causes the satellite to drift to the

other boundary and back again. Upon reaching _ - 2 ° again the drift

rate is - _ o and a maneuver must be performed to prevent violation of

the constraints. In theory, since we are concerned with circular orbits,
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this maneuver is actually a two-maneuver Hohmann transfer between the

two circular orbits (the differing drift rates are caused by the

change in semi-major axis due to the perturbations). In practice the

eccentricity of this "transfer orbit" is smaller than normal residual

eccentricities usually involved with synchronous orbits, so that in

practice only a single maneuver need be made to change the seml-major

axis to the value giving the desired drift rate. The required initial

drift rate is given by

_o = _ 2V3 G1 _o (to.lO-14)

where _o should have the same sign as G I and the upper sign is used

when GI> O. This is equivalent to the convention of Section I0.I0.I

that the drift cycle starts at the boundary closest to the nearest

minor axis (BOUNDI) with the initial drift towards the other boundary

and opposite to the direction of the acceleration. The function G I

and its derivative with respect to longitude, G 2 are given by

G1 - 6 J22 (Re/as)2 sin 2 (_s "_22 )

3 (Re/as)3" _ !_l , sin (_s "_31)
i

+ 45 J33 (Re/as)3 _iin 3 (_s " _33 ) (I0.I0-15)

and

G2 = 12 J22 (Re/as)2 cos 2 (_s " _22 )

. 3 COSJ31 (Re/as)3 (_, "_31)

+ 135 J33 (salsa)3 cos 3 (_a " _33 ) (10.10-16)
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where Re is the Earth equatorlal radius, a is the reference synchronous
S

semi-major axis_ Jij is the lJ coefficient in the Earth's potential

function, and Aij is the ij angle in the Earth's potential function.

Numerical values are given in Reference 10-BB as

J22 = 1.7208 x I0-6

J31 = 2.005 x I0"6

J33 ffi0.16456 x I0-6

2 = -0.2331601 radians

_31 = 0.1154309 radlans

_33 = 0.32571 radians.

The period of the drift cycle is given as

(10.10-17)

where

and

1oLs+ 

Gi+ o
C=

G1 " G2 _'o

(1o.1o-18)

(I0.I0-19)

(10.10-20)
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The rotation rate of the earth, foe, is given as 6.300388 radlans/day.

The velocity increment necessary per cycle is given by

1 _ v (I0.IO-215
V =_ 0 S

where V is the synchronous orbit velocity. A typical optimal drift
S

cycle with only tesseral harmonics is shown in Figure i0.I0-I taken

from Reference 10-BB.
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Figure i0.I0-I. Optimal Drift Cycle in the Absence

of Lunl-Solar Perturbations

10.10.2.2 Luni-Solar Effects

After including the effects of the Sun and Moon, the equations

and _i corresponding to equations (10.10-145 and (10.10-185 arefor o

given by

3101.w_,2_.oI )_q'l _'_l + 2((?_i-G:"_.o5 2('1al ) " 2V3GI_. o (S2(T'15+$2 (0

÷ ÷
V3GI _ o ($2( $2(0))

(10.10-225

(10.10-23)

v

%
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where

,:+<o> (10.10-24)

Again the upper sign is used for G 1 > 0 and _o has the same sign

as G I. Equation (10.10-22) must be solved Iteratively for _/ . A

suitable starting value is _I = _I as given in equation (10.10-18).

The required initial semi-major axis to start the drift cycle is given

by

ao - as (l + _0 ) (10.t0-25)

3 I_IGI-G2_0]

2V301 _0 (S2(rFI) + S2(O))
4 _/3G 1 0+U.

+ 23-E (Cl(O) -2st(o) _.o ) (to.to-z6)

where a is the synchronous semi-major axis after accounting for
s

oblateness and luni-solar effects. The unitless quantity _ is

related to the lunar mass and mean motion and is given as _ -

1.628157 X 10-5 . The functions SI, C I, S2 and C 2 are related to the

luni-solar geometry and are given as

S t .- 0,941480 [sin (2x.,) + 0.460488 sin (2x,)] .+

÷ 0:016 601 sin x., + O.121 571 _,in (3x.,) + O. 188 300 sin (2x. - M.,)

¢1 ," cos" (i.,/2) [1,030076 co_ (2x,.) + 0..201 935 co., (2x,. - at..) -

- 0.027949 cos(2x., + M,.) + 0.026454 cos (2x., - 2,x1,._] +

+ _i.' (i,.)IO..S02270 cos (2x., + 2y_,)+

4- 0,040570 cos(2._,'., + 2y,,, + M.) +

.÷ 0.042080 co=(2x. + 2y,,, - M,,)] ÷

• + _424 255 cos (2x+)÷ 0.0")4 lift7 cos (}x, - Ms) -

- 0.003 545 cos (2X, + ^1,) + 0.036 3.'12co._(2 _', + 2F.)'T.I-

+ o.oll 3,+cos(+,+.+ 2;..) +o.oo,, co.(.,.. + 2.,..+ ^+.)IP+
+ 0.033783 cos x,,, + 0.001776 cos(.,(,,, + M.,) +

+ 0.005 750 cos (x,,, - M..,) + 0.011 924 cos (x. - 2y.,) 4-

+ O.OII 013 corn(3x,,, 4- 2y,,) 4- 0.082 131 ¢o.,;(3x.) +
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+ 0.023254 cos (3x. -M.) - 0.00454 cos(3.x,.,+ M.) 4-

+ 0,004 I06 cos (3x,"- 2M,") + 0.0073 cos (4x',")4-

+ 0.0042 cos (2x,.)+ 0.00160 cos (2x. + 43",.)

S, = 2.169035 [sin (2y,") + 6.156 tl sin (2y.,)] +

.+ 1.5268411.50378 sin AI," + 2.gl951 Sin AI,] +

+ 0.416777 sin (2y,, + M,.) + 0.8000 sin (2y, + ^1,)

C z ==O.158 736 [cos (2.v,.) + 0.460488 cos (2.r,)) +

+ 1.5268410.0.549 cos M, + 0,0077 cos 8l_].

where

). =, satellite longitude measured along the cquator, |hen along the orbital plane"

==D +_o+ M-#:

f/= right ascension or ascending node;

_o==argument of perigee;

M ==me;In tlilonlaly:

g ==Greenwich hour angle:

a ,= osculating semimajor axis;

n," == Moon's mean motion = 0.23 red day" D;

si, - Sun',_ mean motion =, 0.01720] rad d_:v'l;

i,, = Moon's orbit inclination to the equatorild plane, 18.3"_< i,_< 28.59_;

i, = Sun's 9ppnrent orbit inclination to the equutorial plane = 23.445*;

M," = lMoon's orbit II'lCal'l ailoIIlaly = o,.t + A/,,,(O):

M, = Sun's apparent orbit mean anomaly = a.,t + M,(()),

)',.= to,.4-M,,,:

y., = ¢o.,4- M_; "

_,,, = Moon's orbit argumcnt of;"pcrigcc n'lcasurcd froiil iI._ equatori.'ll ascending

node;

oJ, = Sun's apparent orbit argument of perigee:

x, = _l + 0 -.l,._ - D,;

x, = _ + 0 -.v.,:

12, I right ascension of Moon's orbit Ilscending node measured along the equator.

A typical optimal drlft cycle which includes luni-solar

e££ects is shown in Figure 10.10-2. The results using the equations

sunnnarized above fr_n Reference IO-BB are given along with numerical

integration of the equations of motion. The agreement is very good

end is substsntially different from the result which ignores the

luni-solar e£fects. The computer time necessary for the numerics1

integration is about 150 times as much ss for the snalytical result.
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Ii. NUMERICAL _RGETING AND OPTIMIZATION

Ii.i Introducticn

Targeting and optimization in mission analysis is the problem of

selecting certain mission control parameters to optimize some mission

objective while satisfying all mission constraints. Exa,,ples are num-

erous and diverse. Among the areas giving rise to such problems in

orbital mission analysis are:

l) Orbital selection (e.g., choose orbital parameters to maximize

the science return while meeting all other mission require-

ments).

2) Maneuver selection (e.g., select a maneuver strategy and set

of control variables to minimize required propellant while

achieving the desired orbital transfer).

Two basic approaches to the targeting and optimization problem can

be identified: I) numerical and 2) analytical. The numerical method con-

sists of building a complete numerical simulation of the system to be

optimized and then using some numerical procedure to determine the opti-

mal control parameters. The analytical approach, on the other hand, in-

volves constructing an analytical model of the system aud manipulating

it mathematically to obtain the optimal control parameters. Which of the

approaches is superior for a particular application depends upon the users

relative requirements for solution efficiency and flexibility.

In comparing-the efficiencies of the two approaches analytical as

well as numerical effort must be accurately assessed. In general analy-

tical solutions utilize problem-specific analytical techniques to express

the answer in the most computationally efficient form. Numerical solu-

tions by contrast use general numerical procedures to iteratively converge

upon the answer. Thus numerical solutions trade computation for analysis.

AlthouBh a numerical solution may place heavier demand_ upon computer

resources, its analytical counterpart may lay even heavier claims upon

analytical and programming manpower. Generalized numerical optimiza-

tion procedures used in conjunction with generalized system simulators

can enable users to solve difficult optimizatlo_% problems without writing

II-i



a single simulation equation or implementing a line of code. Further,

certain analytical solutions may require the evaluation of transcenden-

tal functions or the solution of nonlinear equations which are computa-

tlonally more onerous than a direct solution by numerical means. Finally,

problems which possess simple analytical solutions usually yield with

commensurate ease to numerical solution.

In comparing the flexibility of the two approaches, numerical

techniques have a clear cut advantage. First, only numerical techniques

permit the level of model sophistication necessary to accurately model

operational systems. Only the simplest of analytical models yield a

solution through mere mathematical manipulation. Nonetheless if analy-

tical technlque yield sufficiently accurate results in _:he context of data 0

modellng_ and execution uncertainties, O_ey should be Judged on o_er more

relevant considezations. Second, numerical solutions generally require

a shorter lead time from problemstatement to answer. By merely build-

in8 a data deck for a genera] ized simulation and optimization program

a relatively unsophisticated user can bring to bear on his problem state-

of-the-art simulation and optimization techniques. The usual lengthy

processes of education_ derivatlon_ implementationt a_d checkout are

circumvented.
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11.2 Mathematical Structure of Problem

From the vast diversity of optimization and targeting problems in

orbital mission analysis a common mathematical structure can be distilled.

First, there is a vector _ of control parameters which must be selected

to define a trajectory. Second, for each trajectory as defined by the

vector of control parameters, _, there is a vector of constraint param-

eters _(_) together with a vector of constraint l_mlting values, b.

The number of such parameters can be less than, equal to, or greater than

the number control parameters. The constraint parameters may have upper

bounds, lower bounds, or both. In fact, the upper bound may equal the

lower bound; that is the parameter may have an equality constraint. Fin-

ally, of each trajectory as characterized by its control parameters, there

is an objective function F(u_. The object of the problem is then to de-

termine the control parameters, _, which are feasible in that all of the

constraint parameters fall within their acceptable ranges and optimal in

the sense that objective is minimized. It suffices te consider the case

of minimization since maximization can be handled as a minimization of

the negative of the desired objective.

The general targeting problem is then the well knewn llonlinear pro-

gramming problem. Symbolically it is expressed as

minimize: F(_)

subject to: _(_) _

where: u is themxlcolumn matrix of control parameters,
m

F is-the scalar objective function of the vector of

control parameters,

is the nxlcolumn matrlx of constraint p_rameters,

b is the nxlcolumn matrix of constraint parameter limits,

, is the nxlcolumn matrix of constraint parameter relations
m

(each element is the appropriate relation of the triple

<, =, or>).

Note that if a trajectory variable has both an upper snd l_er bound,

both it and its negative must be identified as constraint parameters in

this formulation.

Virtually all orbital mission analysis targeting problems can be

cast into this structure.

1
,(11-1)

Tables 1).--1and 11-3 provide nonlinear-programming
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formulations of maneuver targeting problems for the Synchronous Meteorological

Satellite and _e TuB/Shuttle Rendezvous_ respectively. Table 11-2 is a nonlinear

programming formulation of an orbit selection problem for an Earth Resources

Teghnolo_y Satellite.

Numerical solution of the nonlinear programming problem (If-l)

presupposses that the objective function F and the constraint function

be computable from the control parameters, _. Further, all practical

algorithms for solving the general nonlinear minimization problem require

the gradient of the objective function and the Jacoblan sensitivity matrix

of the constraint function. These quantities can be obtained in two

basic ways. First, the user can supply computer code to calculate the

necessary function values. The required sensitivities can then either

be obtained indirectly from the function values by numerical differenc-

ing or directly from additional user-supplied computer code. Such an

approach could best be taken in solving the orbit selection problem of

Table 11-2. Brouwer propagation theory would provide the necessary

functional relations among the mean Keplerian orbital elements. Second,

the user can obtain the necessary functional values from a generalized

numerical simulator simply by selecting the appropriate simulation op-

tions in a data deck. The required sensitivities must t%en be obtained

by numerical differencing. The burden of modeling analysis and computer

coding is thus removed from the user. Further, sophisticated state-of-

the-.art slmulation procedures are placed at his disposal. This second

approach would probably be preferable in solving the maneuver targeting

problems of Tables ii-i and 11-3. The simulation could rhea be performed at

any level of refinement from impulsive transfer with conic coasting arcs to

high precision numerically integrated trajectories with accurate representation

of all relevant forces.
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PROBLEM STATEMENT

Perform synchrollous noncoplanar, fixed duration, fixed thrust maneu-

ver at apogee to minimize attitude-control-system propellant required

on subsequent prescheduled coplanar phasing maneuver.

NONLINEAR PROGRAMMING FORMULATION

Minimize:

subject to:

where:

tp(tp)

[Pp(0A,aA,SA,tp) I]360 [ .24 " =AD

iA(SA.A,8 A) = iD

tp_l

tp is the duration of the ACS phasing maneuver (sec)

RA is true anomaly of apogee motor ignition (deg)

"A is fixed right ascension of the apogee motor

thrust (deg)

8A is fixed declination of the apogee motor thrust

(deg)

AD is desired westward longitudinal drift rate

(deg/sec)

P period of orbit after ACS phasing maneuver (hr)
P

iA inclination after apogee maneuver (deg)

iO desired final inclination (deg).

TABLE ii-I

Representation of Synchronous Meteorological Satellite

Maneuver Targeting Problems as a Nonlinear Program
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PROBLEM STATEMENT

Construct an earth orbit with the following properties:

I. Daily westward progression of ground swaths witn at

least I0 percent overlap;

2. Ground swath repeat cycle of 18 days;

3. Sun synchronous orbit;

4. Eccentricity less than .006;

5. North-to-south equator crossings at approximately i0:00 AM

local time.

Minimize:

subject to:

where:

No minimization is possible since constraint

parameters uniquely determine control param-

eters.

_(_) < .oo6

_a, e, i) = .9856122624

NAR(a , e, i) > 360

NAR(_ , _, _ 360 _ .9 S

18N_R(a , e, i) _ 360.

tD(tD) = I0.

is the mean orbital eccentricity

is rate of change of right ascension of

ascending node (deE/day)

N is the nearest integral number of orbits per day

(rev/day)

A R westward longitudinal progression of the orbit
between consecutive nodal passages (deg/rev)

S is the longitudinal width of the ground swath

at the equator (deE)

tD is mean local time at passage of mean descend-
ing node on first orbit (hrs)

is the mean orbital semi-major axis (km)

is the mean orbital inclination (deE).

TABLE 11-2

Representation of Earth-Resources Technology Satellite Orbit

Selection Problem as a Nomlinear Program



PROBLEM STATEMENT

Assume the elements of a tug transfer orbit to geosynchronous radius

are available from tracking information Just subsequent to the Jetti-

soning of the synchronous equatorial payload. Determine the tug ma-

neuver controls to rendezvous the tug with the shuttle orbiter while

maximizing the tug propellant margin when the maneuver strategy is as

follows:

i. Perform approximately retro-thrust near tug apogee to

correct perigee altitude.

2. Perforr. approximately normal thrust near maximum declin-

ation to correct longitude of ascending node and inclin-

ation errors between tug and shuttle orbits.

3. Perform approximately retro-thrust near tug Ferigee to

secure a low eccentricity intermediate orbit for time

phasing for rendezvous at next perigee passage.

4. Perform approximately retro-thrust near tug perigee for

final convergence of tug orbit to shuttle ortit.

Minimize: P(tl' _i, el, dl,''', t_, _, 0_, d_)

subject to: t_ + d_ - tD

where: ti = thrust ignition time for ith m_neuver as
defined in the PROBLEM STATL_IENT,

_i _ angle from vertical plane containing tug
velocity vector to vertical plane contain-

ing tug thrust vector for ith maneuver

8i " angle of tug thrust vector above horizontal
plane for ith maneuver

di = duration of ith maneuver

t_ - desired time of rendezvous

_T " position vector of tug at time _ + d_

- position vector of shuttle-orblter at

time t_ + d_

_T " position vector of tug at time t_ + d_

- position vector of shut=le at time t_ + d_

P - total tug propel}ant used in the four

maneuver sequence

Table 11-3

Representation of Tus/S_uttie Rendezvous Problem as a Nonlinear Program
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11.3 Numerical Targeting and Optimization Algorithms

11.3.1 Introduction

The range of algorithms designed to solve the nonlinear program-

ming problem (II-i) is so vast as to make a survey of even the most im-

portant ones beyond the scope of this document. Reference [II-I] and

[ii-2 ]serve this purpose well. The objective of this section is rather

to mathematically specify a nonlinear programming algorithm which the

authors extensive experience on trajectory shaping and maneuver target-

ing has proven vastly superior to all others. For problems in which the

objective and constraint functions are specified numerically it converges

faster ,than any other of the well-known procedures.

Two other well known nonlinear programming techniques are de-

scribed in later sections. These are respectively the well-known quality

constraint methods and a speclal-purpose inhibited least-squares algorithm

in use at GSFC. The authors do not, however ' recommend their implementation.

Computational experience here reveals that any problem that can be solved

by these specialized methods can be solved at least as easily by the acceler-

ated projected gradient technique. The presence of ary other targeting

and optimization modules in the _S would only serve tc confuse the user

without adding any additional problem solving capabll_t7.

11.3.2 Accelera:ed Projected Gradient Algorithm

The accelerated projected gradient algorithm is based on five

intuitive worki_Ig principles. The first is one-dimensional search.

Using cost and constraint function gradient information a direction of

search is established. Then a one-dimensional minimization is performed

in this direction upon an appropriate function. In thi_ manner, a diffi-

cult multidimensional optimization problem is replaced by a sequence of

simple one dimensional minlmlzations. The second working principle is

linearized constrainc correction. Assume that the current vector of con-

trol parameters is outside the feasible region. This correction scheme

approximates the contours of constant constraints as uniformly spaced

parallel hyperplanes based on their respective gradients and values for

the current control parameter vector. Using this approximation the

11-8



smallest correction to the control parameters is computed which would satis-

fy all of the active constraints or that failing minimize the sum of the

squares of their violations. One-dimenslonal minimization of the sum of

squares of the constraint errors is then performed along the direction of

this correction to obtain the next iterate of control parameters. The

third principle is _radient pro_ection. Once a feasible vector of con-

trol parameters is obtained the negative gradient is resolved into two

components - one parallel to and one normal to the hyperplsne tangent to

the boundary to the feasible region at the current point. A minimization

is then performed along the direction of the parallel tLegative gradient

component to obtaln the next control parameter iterate. The function

to be minlmized In this one dimensional search is the fo_irth basic prin-

ciple of the algorithm the estimated net cost function. Since the con-

stralnts are nonlinear, the tangent plane only coincides with the bound-

ary of the feasible region at the point of tangency. Hence 8 search

along the component of the gradient lying in the tangent plane will

probably terminate st a point external to the feasible region. Hence

the real object of the search should not merely be to find the minimum

value of the cost function in the search direction. Bather it should be

that unique point along the search ray which yields upot correction back

to the feasible region a new feasible point with the smallest value of

the cost function. This point is approximately determined by minimizing

along the parallel component of the gradient the cost function less an

estimate of the deterioration of the cost function occasioned by correct-

ing back to the feasible region. The estimate is based upon the linear-

ized constraint-correctlon formulae. The fifth and final working prin-

ciple is _radient acceleration. It is well known that the convergence of

unconstrained gradient algorithms can be drastically i_proved by using

gradient information from several iterations to estlmste the inverse of

the Hessian matrix of s quadratic form approxim_tlng _he cost function.

In fact for a cost function of m control parameters it can be shown

that a Hessian-inverse estimating accelerated gradient scheme converges

in m iterations while a conventional steepest descent algorithm converges

only 83ymptotically (see Reference [6J). To similarly accelerate the

projec:ted gradient algorithm for constrained problems, it is assumed
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that the cost function is a quadratic in m-q variables over the constraint

boundary. Here q is the number of active constraints defining the bound-

ary. Thus coverge_ce should be accelerated to m-q iterations after the

set of active constraints determining the feasible regio_ stabilizes.

For the well known special cases of the general nonlinear programming

problem the accelerated projected gradient algorithm degenerates to the

appropriate special purpose state-of-the-art programming procedures. For

example, if no constraints are present, the algorithm degenerates to the

Davidon deflected Gradient procedure. This procedure has long been con-

sidered the method of choice for solving unconstrained parameter minimiza-

tion problems. At the other extreme, if the problem has more active con-

straints than controls, the algorithm reduces to the Gauss' least squares

procedure for minimizing constraint violation. This technique is generally

conceded to be the best availa£le for solving over-determined systems of

equations. Similarly, if the number of constraints is precisely equal to

the number of controls, the algorithm becomes the well known Newton-Raphson

procedure for solving systems of nonlinear equations. This scheme is cer-

tainly the simplest of the efficient methods for solving rally determined

systems of equations.

In order to conveniently specify math_natically the accelerated pro-

Jected gradient algorithm it is necessary first to attend to two matters.

The constraints in the nonlinear program must be reformulated so that the

constraint limits are all zfro. Thus problem (ii-I) beccmes

minimize :, F(u)

subject to: c(u) _ O

where: u is the mxl column matrix of control parameters

F is the scalar objective or cost function

c is the nxl constraint matrix equal to g(u)-b in

problem (Ii-I)

is the nxl column matrix of constraint relations (each
u

element is the appropriate relation to the triple

<D It >)"

Next the algorit,_ must be divided into logically self-contained compon-

ents each of which can best be described separately. This is particularly

true of components such as the one-dimensional minimization logic which is

used in more than one context in the algorithm. The _recise operation of

(11-2)
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the overall method can then be presented as simple macrologic relating

these basic comporents.

11.3.2.1 Sensitivity Information

The entire algorithm is based upon first order sensitivity infor-

mation concerning the cost function and gradient vector. The cost function

gradient with respect to the control vector evaluated at _ is denoted VF(u)

and is defined as the Ixm row matrix

[VF(u)]j_-- = _u_j[u for j = I,..., m. (11-3)

The Jacobian matrix of the constraint vector with respect to the control

vector evaluated at u is denoted by J(u) and is defined as the n_-n matrix

J(u) = _Ujlu

for i = I,..., n
j = I,..., m

(11-4)

These quantities can either be supplied by the user in the form of com-

puter code or generated autonomously by the algorithm through numerical

differencing.

11.3.2.2 Constraint Information

The algorithm functions by manipulating the sensitivity informa-

tion according to logic based on the status of the constraints. To define

this logic certain fundamental definitions must be made and basic relations

stated.

The definition process is best begun by defining the error vector

and its sensitivity matrix. Let K(_) denote the set of active constraints

at the point _, and let k be its cardinality. The term active will be

defined later. For now suffice it to say that the term refers to con-

straints which may be violated in the next one-dimensional search. Let

_(_) be the index of the £th constraint in K(u). Then the error vector

at point _ is defined as the kxl column matrix

e£(_) = _(£)(_) for E = l,..., k. (11-5)

Similarly the error sensitivity matrix at point u is defined to be the
m

kxm matrix

Ii-ii



[S(u_)]_j - "'au-_j_I_ea _
'U

= [J(u_) ]o(_) j

for

•" l,...,k

J - i,..., m

(ll-7)

To motivate the gradient projection formulae, certain geometrical

concepts and relations must be stated. Corresponding to each constraint

function c i is a boundary hypersurface, Bi, defined by

B i = {_:ci(u__) - O} for i - i,..., m. (11-8)

B i is an (m-l)-dimensional nonlinear manifold. It can, however, be approxi-

mated as an (m-l)-dimensional hyperplane at any point, _ in the control

space based upon the value of the constraint and its gradient there. The

approximating hyperplane is simply

ci(G_.) = {_:-vci(u_.) (u-_)__+ ci(&)_ - o} for i-l,..., m. (ll-9)

The feasible region for the ith inequality constraint is that half space

of the control parameter space defined by

Ri = {u: ci(u_) >0} for i - i,..., m. (n-to)

The complete feasible region for all of the constraints is then

n

R = N R i"
i=l

(ii-II)

The boundary of the complete feasible region is then

n

B(R) = U (Bi_ R). (11-12)
i=l

The intersection in the preceding definition is required _o select from

the unbounded boundary, Bi, of the feasible half space of the ith con-

stralnt that portion which is adjacent to the common feasible region, R,

for all constraints.

The fundamental concept in the gradient projection method of

^

constrained optimization is a local boundary hypersurfa,:e, B(u_), defined

at each point in the control space.

B(_)- _^ B_. " (n-13)
_K(_)
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The local boundary hypersurface contains the nearest adjacent boundary

face of the feasible region. If _ is infeasible, it can be made feasi-

ble by proceeding in a normal direction toward B(u). If u is feasible

it can be improved by following the projection in B(u__)of the cost func-

tion gradient.

Although analytic expressions for the above constraint correc-

tion and optimization directions relative to the local boundary hyper-

surface can not be developed for arbitrary constraint functions ci_

formulas can be derived for the approxlma=in 8 linear manlfold C(_). Let

C(G_.)= N ca(G__) (ii-14)
_ K(_)

^

- {_:{s(_) (u-i) + e(u) - o}.

Let Q(u) denote the linear space spanned by the gradient_ to the active

constralnts: that is
k

-{u: u- z =_Vc_}Q(u_)

(11-15)

(11-16)

and let Q(&_) denote the orthogonal complement to Q(_); that is

R_" Q(_3@Q(___). (n-lT)

It can be shown thac Q (u) is the unique linear space that can be trans-

lated to obtain the linear manifold C(u) and hence whose unique ortho-

gonal projection operators P(u__)and P(u__)are sought. These projections

are defined by the relations for any _ in the control parameter space

that

u - P(G_)u+ {(G_)u (n-18)

where

^

P(u_)u £ Q(u) (11-19)

and

#(u_)u_ _(a._). (n-2o)

The numerical formula for the operators can be shown to be

_(u_)- [sT(ssT)-lSlG3 (11-21)

and

P(u3- _ - _(u)._ (11-22)
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With these fundamental concepts described and formulated, it is

now possible to define an active constraint. The ith constraint is said

to be tight at control vector _ when

or

ai #"="and cICu ) < 0 (11-23)

Thls condition implies that constraint i is either violated or on the

verge of being so. A tight constraint i is said to be anconstraining

at u for the active constraint set K(u__)when

and

"i _"=", ci(u) : o, (11-24)

r i =[(ssT) -I S] (_)!F(u_) _ 0 411-25)

Here the sensitivity matrix S(u_ is based upon the candidate active-

constraint set K(u). The condition implied by relations (11-24) and

411-25) is that constraint i is on the verge of violation; but that if a

one-dimensional minimization is conducted along a direction parallel to

the linearized boundary hypersurface C'(u) corresponding to a new active

constraint set K'(u_ obtained from K(_) by deleting the ith constraint,

constraint i will remain unviolated. The concepts of tight and uncon-

straining constraints give rise to the following inductive definition of

the active constraint set K(u_) at _:

i) Take the initial candidate active constraint set K(u_

at u to be the set of tight constraints there;

2) Form the sensitivity matrix S(u) corresponding to K(u);

3) If any of the constraints in K(u_ are unconstraining remove

that one, constraint i, with the smallest value of r i

return to step 2).

4) Take the existing candidate set K(_) as the desired active

constraint set.
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11.3.2.2 Directions of Search

The accelerated projected gradient method conducts its one di-

mensional minimizations in two basic search directions termed the con-

straint and optimization directions respectively. The formulas for com-

puting these directions at an arbitrary point _ in the cuntrol parameter

space are readily written in terms of the sensitivity matrix S(_) based

on the active constraint set, K(_), there. Let the cardiality of this

sQt be denoted by k.

Consider first the constraint direction, sC(u). The error func-

tion to be minimized along the constraint direction is the squared length

of the error vector. Three cases can be distinguished depending on the

number of active constraints, k, relative to the number of controls, m.

Nonetheless, in all cases an analytical exact correction, Au, can be de-

rived for the case of linear constraints. This linear exact correction

is then used in the case of nonlinear constraints to provide not only a

search direction, sC(___, but also an initial trial step length v_(_);

namely

,c(_) = _
-

and

C _
" ll i[l.

(l1-26)

(11-27)

(CASE I: k < m) That unique control correction, A_, is sought which

solves the linearized constraint equation

s(q).xu+ e(q) - o (11-28)

The solutions to this vector equation define the m-k dimensional, hyper-

plane described in the preceding section as the locally-linearized bound-

ary hypersurface. The desired minimum norm correction Au, is then the

vector of minimum length from_ to C(_). Analytically it is given by

__ - -[sTcssZ)-l]Cb e (9. (LL-29)

This correction is illustrated geometrically in Figure ll-l.
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40, minimumnorm C(6), intersection of
correction u linearized congtraints //

   !  iii iii!ili .....- _ - _ .... __-_-_----_ _ -..............-_._ -_-_2-'_.--_ ___._ "_ _h_-. " _-___-a_--_ .'.:::::::: -

=======================================================================================

_/----First linearized Second linearized /

constraint constraint

Figure II-I. ll|ustration of Minimum-Norm Constraint-Correction Direction
k-2<m-3

(Case 2" k = m) Here the local linearized boundary hypersurface reduces

to a single point. Thus there is a unique solution to the linearized

constraint equation (Ii-28) without the additional requirement that the

length of the independent variable correction be minimized. The minimum

norm correction formula then reduces to the familiar Ne_ton-Raphson equation

s l_e(_ ( _13o)__u :=

The Newton-Raphson correction is illustrated geometrically in Figure

ii-2.

_- Second linearized

\constraint

X -- _6, Newton-Raphson

_---Third linearized _ _S c;rrection

J
_\\\\\\\\\\':_\\',,r. ,..;;.,.,,.,,,,I

i _\\\\\\\\\\\\\\\X\\\\_ "_i_

arized \\\X_ l_near _zed con.tra_nts
constraint _"

Figure 11-2. Illustration of Newton-Raphson Constraint-Correctlon
Direction for k - m = 3
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Substantial nonlinearity in the constraint parameters can cause the

constraint-correction logic to fail when either the minimum norm or the

Newton-Raphson search directions are used. The gist of the problem is that

a significant nonlinearity in one or more of the active inequality con-

straints precludes the active-constraint system of equations from having a

solution and causes the linearized search directions to vary erratically.

No difficulty arises when the nonlinear feasible region is empty. However,

if it is nonempty it may contain solutions which the minimum-norm or Newton-

Raphson directions miss because they hold all solutions .on the boundaries

of the satisfied tight inequality constraints. Thus an unsatisfied con-

straint which could be satisfied by moving into the feasible half spaces

of certain satisfied constraints will remain unsatisfied. Figure 11-3 is

a geometrical illustration of this situation.

cons traintInequality \

\ Newton-Raphs cn or\
mlnlmum-norm step

Equality cons_

\

Figure 11-3. lllustration of Failure of N_ton-Raphson and

Minimum-Norm Steps on Nonlinear Constraint System

The algorithm solves this problem by dropping from the active con-

straint set those inequality constraints which are on the verge of vio-

lation but whose feasible half spaces will be entered whe_ the constraint

correction step is taken. A set, R, of relaxable constraints can be ar-

rived at and deleted from the active constraint set, K(_), by the follow-

ing stepwise procedure.
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Q

2.

3.

o

o

Form the set T = {t: (=t='_'')and (ct(Q_)=O)}- R
If T is empty, delete the elements in R from the active constraint

set K_u_) add proceed with the normal constraint correction logic

For each t_.T form the matrix St(u)from the sensitivity matrix S(__)
by deleting the row corresponozng to constraint t_ Similarly form

I: A
the vector e (u) from the error vector e(_) by deleting the component

corresponding to constraint t.

Compute the tentative search directions

ot (__) = _[ sT(ssT )-1 ] t (__)et (_u.) (ll-3l)

for all t_T.

6. Compute

0t - mln {V_ct(_)ot(u_), min [VCr(__)ot(_) ]} (11-32)
rER

7. Find t*eT such that

So

0 t* . min0t

lET

If 0 t* >--0, add t* to R and return to step 2.

(II-33)

(Case 3: k > m) In this situation a simultaneous solution of all the

linearized constraint equations does not exist; that is the linearized

boundary hypersurface is empty. Hence an entirely new criteria for

choosing a linearized constraint correction, An, must be devised. The

accelerated projected gradient algorithm selects that correction which

minimizes the sum of the squares of the residues of the constraint equa-

tions, (11-28). Thus the quadratic functional

= ÷
is minimized with respect to _. The formula for this "least squares"

correction is readily shown to be

A&. _(sTs)-IsTe(Q_). (ii-35)

Fisure 11-4 illustrates the least square4e correction geometrically.
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Third linearized
constraint

Fourth linearized
constraint

Secondlinearized
constraint _ _'- First linearized

constraint

Figure 11-4. Illustration of Least Squares Constraint-Correctlon
Direction for k - 4 m = 3

• oA
Consider next the optimization search direction s (u). When the

number k of active constraints is less than the number of independent

variables at Au it is possible to reduce the cost function by searching

in the direction of the negative gradient projected into the locally lin-

earized boundary hypersurface C(Au_. To compute this tentative optimiza-

tion direction, s°(Q), it is only necessary to apply to the unconstrained

negative cost gradient the projection operator P(_) which projects any

vector in the control parameter space into its orthogonal component in

Q(Au_, the unique linear spac e that can be translated into coincidence

with the linear manifold C(Au__);that is

s°(_.) ffi -[P(u) VF(u_)]T/ I IP('u..,.) VF(6_)I 1. (11-36)

Figure 11-5 illustrates geometrically the direction of the negative pro-

jected gradient for the case of a single active constraint.
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Figure 11-5. Direction of Negative-Projected Gradient for k - i and

m = 3 (feasible region is that region inside paraboloid,

above lower plane, and below upper plane; cost-function is

vertical height).

Such a projected gradient scheme would, however, be only asymptotically

convergent. What is desired is a sequence of one dimensional searches

which would be quadratically convergent. Thus once C(O) remains essen-

tially the same (m - k) dimensional linear manifold from iteration to

iteration, the algorithm should converge in at most (m - k) further steps.

This acceleration can be achieved by assuming that the cost function is

a quadratic form in the (m - k) variables of the manifold C(O_. Defining an

iteratively updated deflection matrix, HR, in the manner of reference [11-6]

the accelerated search direction, sa(_), is computed through the following

inductive procedure where the super- or subscrlpt "_" refers to the current

iteration number:

(1)

(2) m
(3) Compute Au _ - u_ - uO-I and 3# - P(_u_TF(u _)

(4) Form A1) "-(._u__u_T)_ (L_ueT_),

a_

+ +
(5) Compute the accelerated optlmlzatlon direction and the

initial trial step length as

l£ _ -0, set H_) = I and go to step 5.
m

If K(u_) ÷ K(u_ ), set _- _ and go to step 5.

- P(sO'I)__TF(__ #-I) (11-37)

(ll-3S)

(11-39 _,

(11-4o)

(ii-41)

(Ii-_2)
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If there are no equality constraints and if all of the inequality constraints

are inactive, then the algorithm reduces to the deflected gradient procedure

of Fletcher and Powell for solving unconstrained minimization problems.

11.3.2.3 Step-Size Calculation

At any particular point Q in the control space, the accelerated

projected gradient algorithm proceeds by reducing the multidimensional problem

to a one-dimensional search along either the constraint or optimization direc-

tions. In either c lse, once the initial point, Q, and the search direction

_(Q) are specified, the problem is to numerically minimize a function of a

single variable, namely the step size. The algorithm performs this minimi-

zation via polynomial interpolation based on function values along the search

ray and the function value and slope at the starting point, Q. Consider then

in detail the functions to be minimized along the respective search directions

as well as the computation of their starting values and slopes.

The function to be minimized along the constraint direction, sC(Q),

is the sum of the squares of the constraint violations; namely

2

hc(Y) = lJ_[_ ÷ ysC(O)]ll (ll-43)

Obviously

hc(0 ) = lle(Q__)l[2. (11-44)

Differentiation via the chain rule yields

h '(0) = 2er(Q)S(Q_sC(_) (11-45)
c

The function to be minimized along the optimization direction, s°(Q),

is the estimated net cost. This function consists of the change in the cost

function that results from a step of length y along the search ray plus an

estimate of the deterioration in the cost that will arise from correcting

back to the feasible region. More precisely

ho(Y) = F(Q_+ys_°)-F(Q) - vTF(Q) [sT(ssT) -1] (__)e[Q___sc (Q_)]. (11-46)

change in cost

function pro-

duced by a steF

of length 7

along so(_)

V

linearized approximation to

change in cost function re-

quired to perform m_nimum

norm correction back to the

feasible region
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Clearly

h (0) - -vTF(Q)[sT(ssT)-I](Q)e (5) .

Differentiation again by the chain rule gives

h '(0) - vTF(Q)s°(Q).
o

Thus the second term in equation (39) contributes nothing to the initial

slope of ho. The basic properties of the estimated net cost function are

illustrated graphically in Figure 11-6.

(11-47)

(11-48)

Iestimated change in cost function

due to constraint correction _ /
/

/

/

/

/

I //// /

//

cost I /" /_e.tinated net

enual[ I

_"=_-...___ change in cost
• _ /function along

• __ /direction of search

Figure 11-6. Properties of Estimated Net Cost _unction

Both the constraint and optimization directions are based upon

an assumed set of active constraints. Hence for searches in the optimization

direction it is necessary to limit the step size so that the set of active con-
[

straints does not grow. Such a limit based on linear approximation can

readily be obtained. Let L(__.) denote the set of constraints which are

loose at _; that is

L(a_) " {i: ci(Q_) > 0}. (11-49)
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To each element g in L compute the linearized directional derivative, d_,
along the search ray, s°(_).

d_ - V_g(Q_)s°(_) for g_L(Q). (11,50)

Then the approximate distance along the search ray to the region of in-

feasibility for constraint £ is

-c£(_)/d£ if dg < 0m

'_ R if d£ z 0

where R is a large positive constant.

the step length is

for gEL(0_ (11-51)

Hence a reasonable upper bound on

A(Q_) = rain Ag. (11-52)

gEL(O_)

ii. 3.2.4 One-Dimensional Minimization

Monovariant minimization in the projected gradient algorithm is

performed exclusively by polynomial approximation. In general the minimiz-

ing step length, 7, of a function, f(7), along the search ray [(u__) is to be

found to determine a new iterate of control parameters as

u__+I - u__ + y_(___). (n-53)

The function, f, is fitted with a sequence of successively more refined

low-degree polynomials;

3

pm(y ) m Z aiTmi : f(7) for 0 _ 7 i l(u_)._ (11-54)
i=0

Since the degree of the approximating polynomial never exceeds three, its

minimizing abscissa value y_ can be evaluated in closed form. If y_

exceeds i(_), then the algorithm takes

y - _(u__). (11-55)

If, on the other hand, y_ is less than k(u_)__ two tests %re conducted to

determine whether or no= it is an adequate approximation to y*, the true

minlmlzfng abscissa of f. These tests are the conditions

* *

IYm - Y_-II < _iYo (11-56)

where 7o is the length of the initial trial step generated when the search

direction is computed and

IPm(_m*)- f(_*)!<£2" (n-57)
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If either condition (11-56) or (11-57) is satisfied, the algorithm takes

Y - Y_ • _ (11-58)

If not, the algorithm fits f with the next polynomial Pm+l in t_e sequence.

If the current polynomial is the last one in the sequence, the set E of

abscissa values for which f has been evaluated is examinee to determine the

step size _5 with the smallest value of f; that is

y5 = min f(Y).
ycE

The algorithm then takes

(11-59)

Y " 75" (11-60)

The one dimensional minimization routine makes _ngenious use of

all the information it accumulates about f in generating its sequence of
4

approximating polynomials e {Pm}m.l . The first polynomial, PI' is a quad-

ratic determined by the requirements that

pl(0) = f(0), (n-61)

pl'(0) = f'(0), (11-62

and

• "op2(?'o) - f(7" ) (11-63)

The coefficients for thewhere y_ - 7o , the initial trial step estimate.

quadratic are

i . f(0) (11-64)ao

!

a_ = f'(0) (11-65)

a_ - {[f(y_)-ao]/Y_-al}/y _. (11-66)

The abscissa value that minimizes Pl is

*

Yl " -al/2a2. (11-67)

The second polynomial in the sequence is a cubic based upon the

four requirements that

P2(0) - f(0),

p_(0) = f'(0),

P2(Y:)" f(Y;),

p2(y_) = f(y_).

(11-68)

(Ii-69)

(11-70)

(11-71)

and
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The coefficients for the cubic are

a_ = f(O) : (11-72)

a 2 " f' (0)

,
- *2 *3 *2 *_ - (11-74)
tYO Y 1 -71 70")

* 2 * 2 * 2 *
a_ - { [(f (70)-ao)/Y0-al ]/70-a2}/70 (11-75)

The step length that minimizes Pl is

* /(a2, 2 i 2 2 )/(3a_). (11-76)72 " (-a_ + _' 2" -Jala3

The third polynomial in the sequence is a quadratic p&ssing through

the current best point and its two adjacent points. To be more precise,

the accumulated set of sample points, namely [O,f(O)], [-(o,fCYo)],

[y:,f(y:)], and [7:,f(y2)] , is arranged in the order of ascending abscissa

values. The first point whose ordinate value is less than that of the

following point is selected and designated [_2,f(_2)]. The preceding point

is labeled [_l,f(_l)] and the succeeding point as [_3,f(_3)]. Then P3 is

the quadratic polynomial satisfying the three constraints that

P3(_I ) " f(_l), (11-77)

p3(_2 ) = f(_2), (11-78)
and

p3(_3 ) "= f(_3 ). (11-79)

The formulas for the coefficients of P3 are

a_ - -(_2+_3)f(_l)/Dl-(_l+_3)f(_2)/D2-(_l+_2)f(_3)/D 3 (11-80)

a_ - f (_1) ;Dl+f (:2)/D2+f (:3)/D 3 (11-81)
and

a 3 = f(_2)-=2(a_+a23_ 2) (11-82)

where

D 1 = (_2-_i)(_3-_ I) (11-83)

D 2 - (_l-r.2) (_3-_2) (11-84)

D 3 - (_i-_3)(_2-_I). (11-85)

The minimizing step size for this quadratic is

4_ _ y3 - -a /2a . (11-86)

11-25



I

The fourth and final approximating polynomial is a cubic satis-

fying the following four requirements:

and

p4(_l) ffi f(_l ),

p4(_2) - f(_2),

p4(_3) = f(_3 ),

p4(_4) '- f(;4).

The formulas for the coefficients of P4 are

a_ - ;2;3_4f(_l)/Dl+;l_3;4f(_2)/D2+_l;2_4f(;3)/D 3

+_i_2_3f (_4)/D4,

a_ = (E2 +r,3+E4)f(EI )/DI+(;I +;3+E4 )f (Ez)/D2

+(CI+_2+_4) f (;3)/D3+({I+{2+_3 )f (;_)/D4'

a_ - f({l)/D1+f({2)/D2+f({3)/D3+f(_4)/D4,

where

D I - ({2-;i)(_3-{i)(_4-_i)

D2 - ({,-_2)({3-{2)({4-{2)

D3 = (_I-C3)(;2-{3)(_4-_3)

D4 = ({_-;,)(_2-_)({3-;_).

The minimizing abscissa value is

* _ '_'2- _ _ /(3a_)_4 " (-a2+_a2) 3ala3)

11.3.2.5

(11-87)

(11-88)

(n-89)

(11-90)

(11-91)

(11-92)

(11-93)

(11-94)

(11-95)

(11-96)

(11-97)

(11-98)

(11-99).

Variable Weighting

If the rsnges of the components of the control or constraint

vectors differ considerably numerical problems can arise in obtaining

and manipulating sensitivity information. If the control parameters

differ drastically in their ranges, the selection of perturbation sizes

for approximating derivatives as divided differences is complicated.

Also extreme sensitivity of the cost function or constraints to certain

control parameters can cause the numerical approximation to the desired

geometrically-defined search directions to be in significant error.
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Proper control parameter scaling can bring such sensitivities more into

line. Similarly a ccnstraint parameter whose range differs substantially

from those of the others can cause serious problems in search-direction

approximation and curve fitting of the error function.

To avoid these numerical problems both the control and constraint

parameters are scaled. The user's unweighted control-parameter vector,

is replaced by its corresponding scaled-verslon, _, given by

- w _ for J = I,..., m. (II-I00)uj j j

The weighting factors are best taken as the reciprocal of the user's initial

control parameter estimate; that is

wJ" {_ai'U_' otherwiseifu_ # 0 for J - i,..., m . (Ii-i01)

where aj is a special scaling factor input by the user. Alternatively the

user can specify all of the weighting factors. In any cas_ the factors

should be chosen to contain the variation of each weighted control parameter

in the interval from -1 to 1 witch the end points closely approximated.

A similar weighting is defined for the constraint parameters. Let

_i denote the unweighted value of the ith constraint and c i the weighted

value. Then

c i - vic i for i = i,..., n. (11-102)

The default option for selecting these weights is to cake

v i - i/_ i for i _ i,..., n (11-103)

where _i is the specified tolerance on the ith constraint. This weighting

can, however, lead to rather large magnitudes of the constraint parameters.

A preferable weighting is to set

v i - I/_i for i - i,..., n (11-104)

where _i is reasonably tight upper bound estimate on the magnitude of c i-

This weighting more nearly achieves the desired prop_rtles described for

the weighted control parameters.

Finally .%n extreme range of the cost function can cause numerical

difficulties in computing its gradient and in the curve fitting of the
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estimated net cost f,mction. Thus a weighted cost function F is defined in

terms of the user defined cost F as

V(u_>- z_(u_.). (ll-105)

The default option for the weighting is

z - l/l_(u._O>l. (n-lo6)

Alternatively the user can specify z directly. The object, as usual, in

selecting z is to confine variation of F to the interval from -i to 1 while

closely approximating the end points.

Since the user generally specifies F and c in terms of u only

and

._. _f
_ _-_- (11-107)

. __A (n-los)

can be computed by numerical differencing. The equations relating these to

the desired corresponding sensltivlties of the weighted cost function and

constraint parameters with respect to the weighted control parameters are

and

!F_. _
_uj z _-_j/wj

_ci _6i

_-_j =v i _-_j/wj

for J " I,..., m (II-109)

for J _ i,..., m. (ii-ii0)

11.3.2.6 Algorithm Maczologiz

Now thatthe fundamental components of the algorithm have been

described, the controlling logic integrating them into an effective targeting

and optimization procedure can be presented. Once a feasible control parame-

ter vector has been found the algorithm generates a sequence of iteration

pairs. Each pair consists of an optimization step followed by a constraint

step. If the user's initial control-parameter estimate is not feasible,

however, a steadily improving sequence of constralnt-correction steps is

undertaken until a feasible solution is found. Furthermore, the subsequent

optimization step is omitted after any constraint-correction step which

fails to yield a feasible control-parameter vector.

The unaccelerated optimization _earch direction that emanates from

u___ is based on the active-cons=ralnt sensitivity matrix, S(u£); that is
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,..o(u".")= -[P(u_)VF(u__))T, (n-nl)

as discussed previously. Hence s°Cu___) lies in the subspace QCu___). If the

set of active constraints has not changed since the last optimization step,

an accelerated projected gradient directlon, f, is genergtedby multiplying

the unaccelerated direction by a deflection matrix; that is

a (u_) . H_sO(u_). (11-112)

The deflection matrix, H , is updated before each application according to

the formulas given in the section on search directions. "For the case of k

active purely linear constraints and a quadratic cost function this acceler-

ation process guarantees convergence in only m-k steps. The value of the

control-parameter vector after the one-dimensional minimization along the

search ray is then the next iterate; that is

u__+I = (__+_ s_) _ (n-n3)

where (70 ) is the step length that minimizes the estimated net cost function.

The direction for the constraint-correction search then emanates

from u_+I. However, since generating a new Jacobian matrix at u _+I by di-

vided differencing is such an expensive calculation, the old Jacobian at

u is used in approximating the new constraint direction. Further, the set

of active constraints K is frozen from an optimization step to the succeed-

ing constraint step. Hence

S(u__) - S(u_+l)_ (n-ll4_

_'+i
where u is thesolution at the completion of the optimization step. It

can be shown by direction computation that

_(__l ) sc (u__+l) - sC(u_+I) (n-ns)

Hence sC(u _+I) lies in Q(u u+l) = Q(ug). Since Q(u u) and Q(u u) are ortho-

gonally complementary subspaces, it follows that the constraint correction

and the unacceleration optimization directions are exactly orthogonal;

that is

[sJCu__) ]T sf(u_+l) = 0 (11-116)

The value of the control-parameter vector after the one-dimensional minimi-

zation along the search ray is the next iterate; that is

_+I

u_+2 = (u + Y: sc)
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where (71)v+l_ is the step that minimizes the sumof the squares of the

errors in the active constraints. Figure 11-7 geometrically illustrates

a complete projected gradient iteration pair without acceleration.

/--Plane determined by

._ _ gradient to the cost/ function and the gradient
Unconstrained gradient "< to the active constraint
of cost function,

9¥(u9) A_ _k_k_- Minimum-norm constraint

Gradient to c., _k-_='-_-, ! /_k step, (7_s)

_ "--_5> so:eactive

_ _--_Sole active nonlinear

constraint, c
J

Projected gradient
optimization step, (y s°) v

o--

Figure 11-7. Complete PGA Iteration, Consisting of Optimization

Step Followed by Constraint Step for k - 1 and

m - 3 (feasible region is the unbounded region below

the indicated nonlinear constraint manifold).

Finally the algorithm has two stopping conditions. First the search is

stopped if both the change in the cost function and the length of the change

in the control-parameter vector between two successive optimization steps

fall below their respective input tolerances Symbolically

]F(u-_+2)-F(u--_)i< gF' (11-118)
and

112+2- u211<au (U-llg)

where u _ and uV+2 are the control-parameter vectors resulting from the

optimization steps in two consecutive iteration pairs. Second, the pro-

cedure is terminated if the ma)imum permissible number of iterations

specified by the user is exceeded. Figure 11-8 is a precise summary of

the complete macrologic of the accelerated projected gradient algorithm.
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Enter )

Determine set of
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Initialize set of
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set of tight constraints;
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been exceeded

?

No

Yes
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to

Detet_mlne set T of

active inequality

constraints on verge of

violation

Figure 11-8. :_crologic of Accelerated Projected Gradient Algorithm
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Computetentative

aearch direction-, _,

with t omitted from K

for each t E T

Figure 11-8 (continued).

For each t E T compute

mln_rT(u_)_}
r_R" -

I ,
Select t such that

rt, - max r t
t£T

Add t to R|

+ R U It*}

I elete elemente in
R from K|

K(--K- R

_crologic of Accelerated Projected Gradient Algorithm
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Computeappropriate
error correction matrix

C from set K

Compute search direction

c
8 m Ce
u

Determine step size. _c '

that minimizes ^.onstraint

error function

Update current

solution and

iteration counter|

i

Figure 11-8 (continued). Macrologic of Accelerate_ Projected Gradient Algorithm
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Figure 11-8 (continued).

Determine set of active

but uncons tralning
,

constraints ; Delete w from

W " {w: (Cw(_U@) - O) and set of active

constraints

(% _ O) =d <w_ K))

'" f

w with maximum

value of r
w

Form the projection

matrix, PK' for projecting

into the linearized boundary.

hypersurfac e

Com_ute unaccelerated

optimization direction

sOCu ) --PK'_Cu 1_)

S
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optimization step to obtain

current value, H_
L

4>

Relnitialize previous

acceleration matrix

to identity matrix

m

5_crologic of Accelerated Projected Gradient Algorithm
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Obtain accelerated

optimization direction

Determine step size,_ ° P

that minimizes the estimated

net cost function

without exceeding _o

Update current solution

and iteration counter

:) 4-9+ 1

Figure 11-8 (completed). Macrologic of Accelerated Projected Gradient Algorithm
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11.3.3 Equality Constraint Algorithms _

Algorithms for solving the general nonlinear programming problem _

with inequality constraints are particularly unsuited to trajectory prob-

lems where the objective and constraint functions are available only im-

plicitly through relatively expensive numerical propagation of the equa-

tions of motion. Most inequality-constraint techniques make extensive use

of the simplex algorithm and hence require that the objective and constraint

functions be explicitly available so that_they can be readily approximated

as piecewise linear functions over the full range of interegt. Examples

include separable programming and all other methods based upon inner and

outer linearization (see Reference [7]). Other than the projected gradient

algorithm the only other two well-known methods not requiring prohibitive

initial piecewise linearization are ZoutendiJk's method of'feasible direc-

tions and Fiacco and McCornick's SUMT method (see References [8] and [5],

respectively). Neither, however, are very attractive computationally nor

do they have the intuitive appeal of the projected gradient method. Further

the author knows of no implementation of either for practical trajectory

analysis.

Only procedures for solving the specialized problem with equality

constraints have found widespread application in trajectory work. Basic-

ally two approaches have bell used exclusively: (I) minimization of a

penalized cost function and (2) zeroing the Lagrangian gradient. The two

techniques therefore deserve co=ment.

equality constrained program

minimize: F(u_)

subject to: c(u__)-

where:

Reference will be made to the

u is an mxl matrix of control parameters

F is a scalar cost function of the vector

of control parameters

c is an nxl matrix of constraint parameters.

(11-120)

The penalized cost function approach involves fozming an augmented
^

cost function, F, by adding a penalty term to the original cost to penalize

constraint violation. The penalty term must be such that the unconstrained

minimum of the augmented function and the constrained minimum of the

original cost coincide. The augmented cost function can then be minimized

by any desired unccnstrained optimization technique the best of which is
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is probably Davidon's accelerated version of steepest descent. The penalty

term is typically a weighted sum of squares of the constraint errors. Thus

n

_ - F(u_)+ (u_) (11-121)
i=l

J.

The problem with the penalty function approach is that the penalty term

is only a disguised version of the original constraints, which could better

be dealt with directly. As an extreme example if there are precisely m

linear constraints, the best quadratically convergent descent scheme would

require evaluation of F and ! at least m(m+l) times (assumlvg sensitivity

approximation by divided differencing) while the projected gradient algorithm

would require but 2m+l such evaluations.

The Lagrangian method involves solving an equivalent but analytically

more tractable problem. Lagrange showed that under suitably mild conditions

on the differentiability of F and _ the mathematical program (11-120) is

equivalent to finding a point where the gradient of the related Lagrangian

function, L, vanishes. Now the Lagrangian is defined to be

L(e , I_) - F(u__)+ I__T e(_) (11-122)

where _ is an mxl matrix of Lagrange multipliers.

dition is that at the extreme point (u*, I*)

Thus the optimality con-

and

I 0
u*_l*

_L I ffiO.

,u*
Equ ivalen tly

-0_
u* m_*

(11-123)

(11-124)

(11-125)

and

!(u*) - O. (11-126)

The Lagrange approach thus reduces to solving the m+n nonlinear equations

represented by relations (11-125) and (11-126).

Two fundamental objections can be raised to this m_thod. First the

analytical complaint can be made that the number of unknowns has been in-

creased by n with the addition of the Lagrange multipliers. This is significant

since problem difficulty typically increases at least exponentially with di-

mensionality. Second, on numerical grounds exception can be taken to the
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requirement of second partial derivatives of F and _ with respect to the

control parameters for solution of the Lagrange equations by the usual

Newton-Raphson numerical procedure. Such approximation not only requires

an inordinate number of evaluations of F and c ([m+l][m+2]/2 per Newton-

Raphson iteration) but also is very susceptible to numerical roundoff

problems.

11.3.4 Inhibited Least-Squares Algorithm

The MINMAX "nonlinear iterator" currently in use at GSFC solves the

following specialized nonlinear program

2
minimize: + Z

i _C 4

subject to:

where:

F(u_) " Z [ci(u_)-a i] [ci(u_)-b i]

i_C 3

ci(__) - d i for i¢C I

ci(_) >_ ai for iEC2UC 3

ci(u ) & b i for icC2UC 4

u is an mxl matrix of control parameters

(ll-127)

c is an nxl matrix of constraint parameters.

C 1 - set of constraint parameters constrained to

equality

C 2 - set of constraint parameters constrained to an
interval but requiring no opt:miza_ion

C3 - set of indices of variables which are to be

minimized (b i should be taken smaller than

any value attainable by c i) .

C4 - set of indices of variables which are to be

maximized (a i should be taken larger than any

value attainable by cl).

d i - desired value of the c i which is an element of C I

a i - desired lower bound on c i which is an element

of C 2 or artificial lower bound on c i which is an

element of C 3

h i - desired upper bound on c , which is an element of C 2

or artificial upper bound on c i which is an element

of C4.
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The algorithm is based upon an iterative minimization of the square

of the error vector plus a penalty term proportional to the square of the

step length in thelndependent variable. The error vector at control parame-

ter, _, is defined in terms of the set of actlve constralnts there:

K(u_)'{i:(i_Cl)Or[(iEC2UC3)and(cf(_)>bi)]or[(izC2UC4)and(ci(a)<al)]}.(ll-128)

Suppose there are k active constraints and that s£is the index of the £th

entry in K(u). Then the error vector is defined as

co (u_)-d_ if u£_C I
£ £

e£(u_) - co£(u_)-b c£ if (c£cC2UC 3) and (ca£>bc£) (11-129)
I

a@£-c_r_.u ) if (o£¢C2UC4) and (co <no.£.£

The MINMAX code attempts to generate a sequence of control parameter

values for which the functional

R(u__) - [er e](._) (n-130)

decreases monotonically. The generation process is based upon the error

sensitivity matrix

[S(uU)] . _eo£ il for _- i,..., k (11-131)

-- £J _--_ i for J - I,..., m.

J iu_

Assuming the active constraints vary linearly with the controls the exact

control-parameter correction to minimize R(_) is

Au___ = -[(sTs)-Is T] (ug)e(uU). (11-132)

Nonlinear effects can cause this correction to be quite grossly in error.

So instead an augmented functional with a penalty term on the correction

step length is minimized; namely

i {eTe1(u+ XSu_ Au_

The coefficient I is called the inhibitor.

iteration to satisfy the two conditions

ATuuAu _ < E 2

and u

R(Au__) < R(Au__-t).

(Ii-133)

It is chosen anew at each

(11-134)

(n-135)
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The exact minimum of R again assuming linear variation of the active con-

stralnts with the control parameters is

Au 9 = -[(sTs+II)STe](u _) . (11-136)

At the beginning of iteration 9, I is estimated as a proper fraction of
9

19_ I. The control correction A_ is then computed from (11..136), Then

condition (11-134) is tested. If it is not satisfied IV is increased and

the test repeated. This process is continued until satisfaction of relation

(11-134) is achieved. Then condition (11-135) is tested. If it is saris-
9

fled the iteration is complete and the correction Au is made to the control

parameters. If it is not satisfied, 19 is increased and the test redone.

This procedure is repeated until relation (11-135) is satisfied or 19 exceeds

some specified upper bound. When the latter occurs, it Is concluded that

functional R has achieved a local minimum and hence that t_e program (11-127)

is solved.

This algorithm can hardly be considered a state-of-the-art nonlinear

programming technique. It is most effective in solving fully determined sys-

tams of nonlinear equatlons--that is, when C2, C3, and C 4 are empty. In this

targeting mode the code is essentially a Newton-Raphson algorithm if n-m and

a Gauss' "least-squares" procedure If n>m. Only a _rlvlal modification to

either of these algorithms is made in the MINMAX code to prevent excessive

step lengths when the linear extrapolations involved do not apply in minimiz-

ing R. The natural question, however, is that if the ex_z_polations do not

apply for R why do they apply for R. There is no valid answer to this query.

Indeed if a reasonably accurate solution estimate is available the performance

of the MINMAX code would be no better than that of the appropriate Newton-

Raphson or "least-squares" procedures. _ Further, if the estimate was too in-

accurate for convergence of these widely used algorithms the same thing would

probably be true of the inhibited iterator. In such cases_ a best-step

steepest descent algorithm applied to the sum of the squares of the constraint

errors would better serve to drive the solution into the range of Newton-

Raphson or least-squares convergence.

The objective function of the program (11-127) is too restricted to

make MINMAX useful in solving trajectory optimization problems. If C3UC 4

contains more than one constraint, it is rather difficult to select their

relative weighting factors. Further if C3UC 4 is empty there is no criterion
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for selecting a best solution from the multiplicity of feasible solutions.

In this situation the projected gradient algorithm choose3 that feasible

solution closest to the initial control-parameter estimate if the user

provides no explicit cost function.

The general accelerated projected gradient algorithm would provide

a targeting capability with equal or better convergence properties than

MINMAX, plus a completely flexible optimization facility. Indeed, the

projected gradient algorithm targets an initially infeasible control parame-

ter estimate by the method of "minimum norm", Newton-Raphson, or least-

square s iteration depending upon whether m<n, m=n, or m>u respectively. It

then proceeds to minimize an arbitrary cost function specified by the user

while maintaining feasibility. The constrained optimization technique em-

ployed is the stable gradient projection technique of P_0sen with added

acceleration logic to expedite terminal convergence.
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12.

12.1

Tracking Error Analysis

Introduction

This chapter will be devoted to the description and definition of

the linear error analysis tracking model, the mathematical formulation

of the required equations relating to the model and the specific algo-

ithms used in the error analysis of the orbit determination process. The

real-time orbit determination process is performed by the GTDS, so the

CMAS formulations _Jill be addressed primarily towards the pre-fllght

phase. For consistency and compatib111ty, the same filter models as used

in the GTDS will be included in the GMAS. Other filters such as sequential

weighted least squares and Kalman-Schmldt are also included. Features that

are very attractive for pre-flight analysis such as the error budget map

and generalized covarlance analysis will be discussed in Chapter 14.

The measurement models and error sources are given. The GMAS will

model range, range-rate, altimeter, right ascension, declination, dlrectlon

cosine, glmbal angle, azimuth, elevation, and satellite to satellite-range

and range-rate. The measurement errors wlll include biases, timing errors,

tracking station location errors, and atmospheric and iono_pherlc error

effects.
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12.2 Estimation Processing

12.2.1 Weighted Least Squares Estimation

The weighted least squares estimator assumes that vector observations of

the form

y = f(x) + n (12.2-1)

m

are processed. For a set of m observations the observed m-dimensional vector y

is equal to the known (i.e. postulated) vector function f of a set of p parame-

ters denoted by the p-dimenslonal vector x plus random noise denoted by the

vector _. The trajectory determination problem is to estimate _ given the func-

tional form of _, the statistics of n and the measurements y. Since the function-

al form of _ is in general non-llnear, the solution must be found iteratively us-

ing linear theory. From linear theory, the solution of equation (12.2-I) is given

by

-I

=_ + (FTWF) FTw_ (12.2-2)
o

^ is the a priori value of x F is the observationwhere x is the estimate of x, x°

matrix given by

F-

(a[)_ [the m x p matrlx of partialwithrespezt 1
_derivatlves of f.-_ ( L2

(_=Xo) _to x evaluated a_X_ -%

and w is theweightingtimematrix. The quantityAF is givenby AT " - Y(x )
O

As a result of the linearization of f, the correction term on the right

hand side of equation(12.2-2)must be small Co not violate linearlty. If such is

not the case, then the process is repeated iteratively in standard Newton-Raphson

fashion, each time using the last estimate x for the evaluation of F and AT.

A

" The covariance of the estimate x is given by PAx' the inverse of the p x p

normal matrix (FTwF) after the'estimation process has converged and when the follow-

ing statistical assumptions of the measurement process are satisfied:

(a) The observation noise is unbiased, i.e., _{n} - 0.

(b) The errors in the observation vector components are uncorrelated and

the covarlance of the observation noise vector is known and its inverse

la the welghtln8 matrix W. Let o t be the variance of the measurement

noise component n|, which corresponds to measurz_ent YI| o_ the

variance of component n2, which corresponds to Y2; and so on.
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The weighting matrix is

(c)

W m

2

0.-2 0
2

0.-2
m

(12.2-4)

Equating the inverse of W to the covariance matrix of measurement

errors implies that multicomponent observations at a given time

(e.g., range, azimuth, elevation) are not spatislly correlated and

that measurements at diffeEent times are not time-correlated.

The mathematical models of the trajectory and observations charac-

terize exactly the physics governing the observation process. All

parameters such as biases, tracking station locations and physical

constants that are not being estimated are known exactly.

The above criteria can never be met precisely in real spacecraft appli-

cations. As a result, the covariance matrix, (FTwF) -I, must be realistically

interpreted with regard to the specific application.

For many applications not all of the parameters affecting f should he

solved-for• In this case the initial assumption that the measurement vector y,

can be related to the state and model parameters is given as

y = f(x,z) + n (12.2-5)

where two classes of variables are included. The p-dimensio_l vector x, desig-

nated solve-for vector, contains as components the state and model parameters

whose values are known with limited certainty and are to be estimated. The q-

dimensional vector, z, designated consider vector, contains as components all

model parameters whose values are known with limited certainty but are not to

be estimated Nevertheless, the uncertainty of z is to be considered. A priori

values of _ and _ are specified to be _o and z--o with respective covariance

matrices PAx ° and PAz o.

The linearized solution to eq_.tion(12.2-5)is exactly the same as for

equation (12-1) and is given by equation(12.2-2),that is, t_,e estimate x does

not depend upon the consider parameters. The more general form of equation

(12.2-2) which includes the effect of the _ priori estimate xo and its covariance

P is given by
Ax o
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Xo÷ + ÷ 2
m ^

The quantity (Xo-X) is non-zero only on the second and subsequent iterations of
^

an iterative solution since x is determined by the previous estimate.

The covariance of x in the presence of consider parameters is given by

PAx = _{FTWEPAzo ETwF + _-i
(12.2-7)

+ FTwECTxoAZa p-I + p-i ETwF} _TAx o Ax o CAxoAZ

where the following definitions have been made

CAXoA z " _ {(x---xL)(_-_o) T }

-i
, _FTW F + p-I

nx o)

(t2.2-8)

(12.Z-9)

( 12.2-10)

and E is the mxq observation matrlx for the consider parameter3 given by

z = l _z 1(Z=_o)
(12.2-11)

It is assumed that no correlation between the measurement noise and the error in

the solve-for or consider variables exists. Even if the initial correlation matrix

CAXoA z is zero, a correlation between errors in the solve-for and consider vari-

ables will result from the measurement processing. This correlation CAxAz is

given by

CAxAz = _[P_oCAxoAZ + FTwEPAzo] (12.2-12)

It is seen from equatlons(12.2-6),(12.2-7)and(12.2-12) that only the esti-

mator requires measurement data. The equations for the covariance and correlation

matrices require only the statistics, W, of the observationa which are usually

known for specific classes of trackers and sensors. Therefore, if one assumes

that the _priori reference trajectory, Xo, is the best estimate, the estimator

equation can be omitted and the covariance and correlation matrix can be deter-

mined for specific mission sensors and observation profiles. It must also be

assumed that the mathematical models in the program accurately characterize the

physical situation.

For preflight analysis using GMAS studies can be performed to determine:
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o the effect of measurement data errors (random and systematic), measure-

ment time spans, and sampling rates on the accuracy of the estimated

state and model parameters

o the effect of the trajectory dynamics and the trajectory/sensor relative

geometry on the accuracy of the estimated state and model parameters

o the relative effects of different types of measurements on the accuracy

of the estimated state and model parameters.

These kinds of error analysis studies are solely concerned with the influence that

errors in problem variables have on the accuracy of the estimate. Thi_ type of

analysis can strongly influence the design and enhancement of spacecraft missions
J

as well as establish requirements for observation sensor accuracies, sampling

rates, tracking times, and sensor locations.

The method of evaluating equatlons(12.2-7)and(12.2-12)are very similar to

the corresponding calculations associated with the reduction of real data in GTDS

(Reference 12.1). An_ priori estimate of the solve-for and consider varlables,
__ m

xo and Zo, respectively, alon E with their covarlance matrices, PAx ° and PAzo, is

specified. The measurement schedule and measurement uncertainty, W, is also speci-

fied _ priori. The program then proceeds to integrate the nonlinear differential

equations of motion and their corresponding variational equetlons to the measure-

ment times and compute the measurement partials. The rows of the matrices F and

E in equations(12.2-7) and( 12.2-12) are accumulated as the measurement statistics

are processed. Ultiu_utely the covariance and correlation matrices PAx and CAxAz

are calculated at the epoch time. The covariance and correlation mal:rlces may

then be propagated to specified times TI, T2,.. . T s as described in Section

Since the estimation equation is not being solved, iterating is unneces-

It would appear that since an estimate is not actually being determined, it

should make little difference whether model parameters are associated with the

solve-for vector, x, or the consider vector, z. A subtle difference does exist.

Components of the consider vector, _, are maintained at their a priori specified

values throughout the processing, and therefore have no possibility for improve-

ment through estimation. As a result, their covariances are never improved com-

pared to that initia_.ly specified, i.e., PAr " The solve-for variables, x, have
o

their values continually improved through the estimation process, and this is

reflected through the usually redu(:ed variance elements in PAx" Because of the

coupling, the uncertainty of the state components is affected differently if the

same model parameter is associated with _ than if it is associated with _.
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For compatibility calculations in _ and GTDS should be performed as

nearly identically as possible. This will allow error analynis studies performed

with GMAS to be realistic in their prediction of the types of uncertainties to be

expected on a given mission.

12.2.2 Partitioning of the Augmented State Covarlances

It has been found (Reference 12.2) that for error analysis applications,

considerable savings both in the number of computations and core storage require-

ment@ can be achieved by partitioning the matrices and vectors involved in equa-

tions(12.2-7)and(12.2-12> This is due to the fact that many studies will involve

the error analysis of several arcs of data which may have different state parame-

ters associated with them as well as other solve-for and/or consider parameters

which may be associated with one or all arcs•

The solve-for parameters are partitioned as

X

m

al

Q

a n

b
n

(12.2-13)

where a i contains the ith arc orbital elements or epoch state, b i contains

all of the other ith arc solve-for parameters, and c contains the solve-for

parameters common to all arcs. Similarly the consider parameters are partitioned

as

_ .d1
-- dl .
z - = • (12.2-1.4)

e i

" " i dn

Le.

u

where d i contains the consider parameters associated with the ith arc and e

contains the consider parameters common to all arcs.

The observation matrices F and E are partitioned s_milarlF with the

resulting normal matrix being partitioned as
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where

(FTwF) -

F T f FaT W Fb I FaTW Fc-Fa W F a I 1

t- 1

I FbTW I_ I FbT W FcFbTW Fa I t

t- t

FcTW I F TW Fb f F TW FFa I c f c c

F - [F a Fb Fc]

(12.2-15)

(12.2-16)

and

E = [E d E e] (12.2-17)

The other matrix expressions in equations(12.2-7)and(12.2-12)are partitioned simi-

lar to equation (12.2-15).

12.2.3 Sequential Weighted Least Squares

By treating the m components (or sub-groupings of them) of the m-

dimensional observation vector y described by equation(12.2-1)sequentially, an

alternative formulation of the weighted least squares may be obtained. The first

measurement or group of measurements is processed in exactly the way described in

Section 12.2.1, then that result is used as the _ priori for the second measurement

or group of measurements and this process is continued through the entire sequence.

This process is recursive in nature and the recursion relation for the estimation

equation is given by

^ FT -- (12.2-18)
XN+l " iN + PN+I N+I WN+I AYN+I

where the subscripts N and N+I refer to the measurement being processed. Thus

if individual measurements are being processed (the generalization to groups of

measurements is straightforward) then FN+ I is the (N+l)th row of F and WN+ I is

the (N+l)th diagonal element of W which is the inverse of the noise variance for

the (N+l)th measurement. The covariance of the estimate after (N+I) measurements,

PN+I' is determined from

p1 wN+1F +p[l (12219>N+I +I N+I

The recurslve procedure defined by equatlons(12.2.18) and ( [2 .2_19) [s initialized

will, II,_ _ Pl.i0!! wlu,_

xo " xo (12.2-20)

Po " PAx o (12.2-21)
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To this point there is no real advantage to the sequential formulation

either for the estimation problem or for error analysis_ in fact each step of

the sequential processing would involve the inversion of the m_trix PN which is

of the same dimension as the solve-for parameter vector, x. It is thus necessary

to manipulate equation (12.2-19) to produce a recursive procedure that involves

no matrix inversions (at least for scalar measurements, an n-dimensional measure-

ment will involve inversion of an nxn matrix). The result ia derived in reference

12.1 and is given by

-I

PN+I " PN [I - 6TN+I T(SN+IPN_N+ 1 + I)

where the matrix 8 is defined by

T . FT W
8N+I N+I

BN+IPN ] (12.2-22)

(12.2-23)

isince W is positive definite the matrix W½ is well defined. The matrix to be

inverted in equation (12.2-22) is of the same dimension as the measurement_ so that

for scalar measurements no matrix inversion is involved. For this latter case

equation (12.2-22) reduces to

-i

PN+I " PN [I _ FN+IT (FN+IPN FTN+I"+ qN+l ) FN+IPN ] ( 12.2-241

where qN+l is the variance of the noise on the (N+l)th scalar measurement.

It should be noted that for the application of error analysis the se-

quential processing of a series of measurements using equation (12.2-24)wiii give

exactly the same result (within numerical round-off errors) au processing those

measurements using the batch process equation. This is due to the fact that the

_riorl state x ° is used as the best estimate for the calculation of the obser-

vation matrices in both processes. For estimation applications it should be

noted that in Sequential procesaing_ as each measurement is made the updated

state estimate XN is used in the calculation of the observatlon matrix FN+ 1 •

In general then_ several Iteratlons through ell of the measurements may be

necessary to obtain a converged solution when using sequential processing as

well as for batch processing. If a unique solution exists and if both sequential

and batch processing of the measurements converge m then they both will converge

to the same solution, although not necessarily in the same way.

For analyses involving the inclusion of consider parameterst the batch

processing equations are given in equations(12.2-6)and(12.2-7). To use sequen-

tial processing which is equivalent to the batch processing0 it must be noted

that a characteristic of batch weighted least squares is that the estimation

equatlon(12.2-6)depends only on the solve-for parameters and _ence only the
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covariance equation(12.2-7)is affected by the consider parameters. The sequen-

tial processing equatlons(12.2-18) and( 12.2-24)must be modified to account for

this behavior in the following way. The covariance PN+I in equation (12.2-18)

must be replaced by P_I which is the covariance which would be obtained at that

measurement, from processing the same set of measurements in the absence of

consider parameters. The equations for the covariance PN+I and the correlation

must also be modified. The equations are given by
matrix CAxA ZN+ I

A

- PN+IFN+IqN+IAYN+IxN+I XN + , -i --

PN+I " PN - _+lq+l - AN+IKN+IT + KN_IJN+IKNT+I

CAX_ZN+ I = CAx_z N - KN+ I BT

where the weighted least squares gain matrix KN+ I is given by

-I
F

KIll = PN+I N+lqN+I

(t2.2-25)

(12.2-26)

(12.2-27)

The form of (.quation(12.2-26)applies for an)' arbitrarily defined gain r=ltr_J(.

The quantities AN+ l, BN+ I, JN+I are given by

AN+I " PNFT+I + CAxAz _+i (12.2-28)
N

T T + ET
BN+ I " CAxAz FN+ I PAz N+I

N o

JN+I = FN+I_+I + _+IBN+I + qN+l (12.2-30)

12.2.4 Kalman-Schmidt Estimation

The estimation theory described in this section (Reference 12.3) is simi-

lar in many ways to the sequential weighted least squares theory described in

the previous section. There are two basic differences between the methods--one

major and one minor. The minor difference is simply that rather than relating

an observation to an epoch state by the observation matrix F, the observation is

related to the state at the observation time by the observation matrix H. For

linear analysis this wlll make no difference. For a general non-llnear problem,

again tile convergence may be different, but an_umtng convergence and a unique

it*,lliill,ii th_ ritl41 fintllt Will hi the =lillla. Tll= ¢'ov41:l_nc= lmlo¢tmtid with thl

solve-For parameters will also be the same, given the p¢ovlno that it is related

to the epoch state or elements through the proper state Cransztion matrix. Thus

for linear error analysis, this difference of processing at each time point is

unimportant.

(. 12.2=29)
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The major difference between the two methods involves the treatment of

consider parameters. In weighted least squares estimation, the consider parame-

ters have no effect upon the estimator equation, which was implicit in the batch

formulation(equatlon 12.2-6)and was explicit in the sequential formulation (equa-

• !

tion 12.2-25) since a gain involving PN+I' the covariance without consider parame-

ters, had to be introduced. In Kalman-Schmidt estimation theory the consider

parameters do affect the estimation as well as the covarlance. Simply put, the

estimation and covariance equations are derived as though the consider parameters

were solve-for parameters also. Thus the gain matrix applied to the solve-for

parameters, depends upon the consider parameters exactly as though it were the

partition of an augmented solve-for vector which included the consider parameters.

Then at the measurement, the consider parameters are simply not modified nor is

the covariance associated with them reduced by the measurement.

The general effect of this method is that for estimation, the final result

Ls in general different from that of weighted least squares. The estimate of the

solve-for state is more heavily influenced by the later measurements in the time

sequence (overand above the inherent noise associated with each measurement),

than by the earlier measurements. The rationale behind this is similar to that

for using consider parameters in the first place. Namely that no matter how

carefully a dynamic system is modeled, in the real world there are influences

which are either not modeled at all or are improperly modeled. Thus it makes

sense in estimating a state and its uncertainty at a certain time, to give greater

weight to the measurements nearer to it in time than to those farther away.

For the application of error analysis the covariances generated by the

Kalman-Schmidt consider filter generally lle somewhere between those derived

from weighted least squares without consider parameters and weighted least squares

with the consider parameters. The estimator and covariance equations for the

Kalman-Schmldt consider filter, using notation similar to that of the previous

section, are given in Reference 12.3 as

iN+l" i,I+ AF

. T

CAXAZN+ 1 CAxAz N - _+i BN+I

(12.2-31)

(_2.2-32)

(12.2-33)

where the Kalman gain matrix KN+ I is defined by

_+I " AN+I (HN+IAN+I + GN+IBN+I + qN+l)

-I
(12.2-34)
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and where the auxiliary matrices A and B are defined by

AN+I = PN _+i + CAxAz N GT

ffiC T _I + GT
BIll AxAz N PAz °

(12.2=36)

The observation matrices relating the observation to the current solve-for state

parameters and consider parameters are H and G, respectively. The general form

of the update equation for the covarlance PN+I given in equation (12.2-26)reduces

to equation(12.2-32)when the gain matrix is defined by equation (12.2-34.
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Range

tion.

Rate.

The range rate derivative deserves

Remembering that

0 m r t

special atten-

(12.3-_o)

We'write

p u U " P (12.3-11)

Thus

Because

ee
• 1 A •-

p " U . p + .U • p (L2.3-12)

..%
P

: d ^ ;, .^
=t _ (pu) -" pu + pu
" dt

(t2.3=13)

we may substitute in equation( L2.3-12) above for u , giving

. 1
- - c_._- _a. _ •_._

P
(12.3-14)
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12.3 MEASUREMENT MODELS

The observation matrices referred to in the previous section require

that the various types of measurements be mathematlcally defined and that

the partial derivatives of these measurements with respect to both solve-

for and consider parameters be computed• The equations for the following

basic types of observations will be taken directly from Reference 12.2

o range and range rate

o altimeter height I

o right ascension and declination

o direction cosines

o X and Y gimbal angles

o ezimuth and elevation

o satellite satelllte-range and range-rate

These measurements are geometric in nature. The computed values for

the observations are obtained by applying geometric relationshLps to the

computed values for the relative positions and velocities of the satellite

and the observer at the desired time.

12.3.1 Range a]_d Range, Rate

t

Range: .

.T

Considcr the station-satellitc vector:

where

-p = E -
/(12-37)

r is the satellite position vector (x,y,z)

the geocentric Earth-£ixed system, and

in

(t2.3-I)
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_ob is the station vector in the same system.

The magnitude of this vector, p, is the (slant)

range, which is one of the measurements.

Range rate:

The time rate of change o£ this vector E is

m w

p - r (12•3-2)

as the velocity of the observer in the Earth-fixed sys-

tem is zero. Let us consider that

A

P " OU (,12.3-3)

where

u is the unit vector in the _irection of i5.

Thus we have

i

.__ .,, 1
p - pU + pU (12.3-4)

The quantity _ in the.above equation is the computed value

for the range rate and is determined by

• M •
m

p " U . I" _LL2.3rs)
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The partial derivatives of range and range rate with
I

respect to'the satellite position end velocity are given

below. All are in the geocentric, Earth-fixed system.

(The r i refer to the Earth-fixed components of T.)

Range :

_P Pl

_r i P

(12.3-6)

Range rate:

_r i

(12.3-7)

_P Pi

_r i P
(12.3-8)

The.derivatives of range and range rate with

respect to time are presented below. All are in the

Earth-£ixcd system.

Range:

• I

p = U . r
(12.3-9)



or _ aS

• A •w

I)" U : p (12.3-15)

we may write

- 1

p

The gradient of the potential U with respect to the Earth-

£1xcd position coordinates of the satellite" is the part o£

_ duo to the gcopotential:

;)U GH [)ri r-S 1 - aelr zcz° " sin2¢ - 1-Z rt r i

We must add.to this the effect of the rotation o£ the

coordinate system. (The Earth-fixed coordinate system

rotates with respect to the true o£ date coordinates with

a rate O the time rate of chan_e of the Greenwich hour
_ ._

angle.) The components o£ _ are _hen

;1 - _U + [x cos eg + y sin eg] eg + r 2 eg
_r I

(12.3-18)

P2 " _ + [-x sin eg + y cos eg] eg - r I 8g (12.3-19)

- )U _U

P3 = -- = -- (12.3-20)

_r 3 _z .

where x and y are the true o£ date satellite velocity

components.
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12.3.2 Altimeter iteight

The altimeter height is unique in that the satellite

is making the observation. Nhile this is actually a

measurement from the satellite to the surface of the Earth,

it is taken to be a measurement of the spheroid height and

the time rate of change of that quantity for obvious

reasons. Using the formula for spheroid height

" 4

(12.3-21)

where

ae

3 2

•c..,.

is the Earth's mean equatorial radius,

f is the Earth's flattening, and

z is r3, the z component of the Earth-fixed

satellite vector.

For error analysis purposes, th9 partial derivatives

of the _Ithncter measurement with respect to the satcllite

position, velocity, and time are needed. These are derived

directly from the analytical expression for HAL T .
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- = ÷ - 2 a e f ÷ 3 a e £2

_rl, r r

• ° •

i l'] .x,1-,,o,' x

(12.3-22)

The time derivative o£ altimeter range is given by

• _ltAL T • _HAL T • _HAL T •
HAL T - r 1 ÷ r 2 + r 3

_r I _r 2 _r 3

(12.3-23)

The altimeter measurement is actually made to the

geoid surface instead of the spheroid surface. A detailed

geoid is necessary, however, to model the altimeter measure-

ments to properly exploit their full accuracy.

12.3.3 Right Ascension and Declination

The topocentric right ascension a and declination

6 are inertial coordinate system measurements as illus-

trated in Figure 12.1. These angles are computed from the

components of the Earth-fixed station-satellite vector

(12.3-24)

(t2.3-25)

and the Greemvich hour angle eg.

,. t_n "1 _P2/ . e,
_Pl/
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Figure 12.3-1.

NORTH

Topocentric right ascension _ declination angles

The partial derivatives of these measurements _,ith respect
-%

tO the Earth-fixed satellite position vcctor _ are givcn by

Right Ascension:

aa "P2"
m

(12.3-26)

_a 01

_tr 2 ¢oi + P2

(12.3-27)

_a

--- • 0 (12.3-28)

3
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Doclination:

;)6 " ¢1 P3
n n

I*

(12.3-29)

_6 " P2 °3
..,.... U

ar2 p
(12.3-3o)

I

m ma

• Z
1tr 3 P

The time derivatives are given by

.

.'3
..

Right ascension: a =

I •

u I r2-u 2 r 1

(12.3-31)

(12.3-32)

Declination: (12.3-33)

where the unit vector u is defined as

A P

(12.3-34)

I
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12.3.4 Direction Cosines

There are throe direction cosines associated with

the station-satellite vector in the topocentric system.
A A

Description of these measurements requires the N, Z, and E

(north, zenith and east baseline unit vectors which describe
A

the tropoccntric system along with the u). The direction

cosines are computed as:

2. = U • E (t2.3-35)

t

In a U . N (12.3-36)

A

n - u . I (t2.3-37)

The partial derivatives of the direction cosines with

respect to the satellite position vector are given b/

..

.--.-- __ . tU i
_r i p

(t2.3-38)

1[ jo"---- = -- N. - _.u

_ri x i
(12.3-39)

,_[zlnu]_r i 0 3. (12.3-40)
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where

B. = component of E in the
k • r i direction

Ni = component of N in the r£ direction (12.3-42)

Z i = component of Z in the r$ direction (12.3-43)

The time derivatives of the L and m direction cosines are

given by

w

. p • E-_0 (12.3-44)
6=

0

"o A Q

• O • N-m0
M = • _ (12.3-45)

P

12.3.5 X and y Angles

The x and y angles, as illustrated in Figure 12.2, are

computed in a tropocentric coordinate system as

i

, Ya = sln'l (a) (12.3-47)
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ZENITH

Trocking Stotion

Locol Horizonlcl Pk2r,e

Figure 12.3-2. X and Y Ang!es

The derivatives of the x and y angles with respect to the

satellite position, vector are

axa n_i- _-.zi

---"
ar i O

C 12.3-48)

(12.3-49)
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and the time derivatives are given by

A

• Ca E-_Z)

p Cl-mZ)
(12.3-50)

_. _" _-=o

12.3.6 Azimuth and Elevation

(12.3-51)

Figure 12.3-3

and elevation. These angles are

centric coordinate system as

A z = tan "1 _
m

illustrates the measurcmcnt of

computed in the

azimuth

topo-

(t2.3-52)

E L

t w

= sin 1 (n)
(12.3-53)

The partial derivatives with respect

position vector are given by

_A z mE i -tN i

_, pA/=_-.z_

to the satellite

( 12.3-54)

_E t Zi-nu i
(12.3-55)
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Zenith

West

Figure 12.3-3. Azimuth and Elevation Angles

and thc partial derivatives with respect to time are
I

" c,._-_
;'z" m (12.3-56)

p • Z-mp

El," (12.3-57)
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12.3.7 Satell_ite-Satellite Range and Range R:.te

The range measurcmcnt from one satellite to another

is computed as follows•

Let _ be the inertial coordinates of the transmit-
s

tin S satellite and _ the inertial coordinates of the receiving
2

satellite. Then the range (or distance) between the two

satellites is given by

• |, n

R -J Ct2 - ._ ) • (_ - f ) (12.3-58)

The time rate of change of range, or just range rate, is cal-

culated by differentiating (12.3-58) with respect to time

Relay range and range rate measurements can also be simulated.

Relay range is simply the sum of two range measurements: the

range from some transmitting station to a satellite plus the

range from that same satellite to another satellite. This

configuration is given in Figure 12.3-4. Thus, according to the

notation in Figure 12.3-4p the relay range is defined as

R

Relay

. i I. I .I•
=R .R

| •

(12.3-60)

Likewise, the relay range rate is the time derivation of

( 12.3-60)or

i .i .i
I 1 (12.3-61)

IRelay

12.3-15



Since the partial derivative of a sum is equal to tho

sum of the individual partial darivativcs, a,y partial.

derivative of RRelay or RRelay can 1)e fou,d by summing

the individual partials of tho two qu;:ntJtica in the

sum. Speci£ically, if one wants th6 parti;Ll with respect

to some parameter o, then"

_:Rrola), _R ]R
. @__.L +_,

(12.3-62)
J

(12.3-63)

Figure 12.3-4._Gcometry for $ntcl I _te-._:mtell ite Tracking
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12.4 MEASURI_ENT ERRORS

This section discusses the individual measurement error sources and

the mathematics used to model them. The equations are taken directly from

Reference 12.2.

The simplest type of measurement error to model is a bias in the

measured quantity itself. Bias errors are considered as constants which

must be added on to _he computed value in order to better represent the

observed value. Thus

? b (12,4-I)

where

%

Z c is the computed measurement corrected for

any biases

%

is the computed measurement based only on

satellite geometry

b is the bias

Thus

all measurement types. (12.4,2)

12.4.1 Timing Errors

Should the time tag of the measurement be incorrect,

then a correction to this time tag is called a correction

to timing. Any error in this correction can be found by

computing the partial derivative of the computed measurement

and multiplying by the time error, or

_Z c
• t_-At = AZ. . (12.4-3)

• _rlm

12.4-1



where

where

6t is the timing error, but

_Zc _Zc _7

_- _t

•. )Z c

_" r

m

r is the satellite position vector

( 12.4-4)

r is the satellite velocity vector.

Thus

AZcTin o_
At

(12.4-5)

The time tag assigned to thq measurement is usually

the time at which the station receives the signal. _ut the

satellite retransmitted the signal to the receiving station

at some earlier time• Therefore, t,vo times are involved.

To simplify matters somewhat, the observed measurements

usually have been corrected so the. computation process of

the computed values can assume the satellite and station at

the same time. An error in this transit time correction is

similar to the timing error just discussed, but now the

systematic'error is some fractional Tart of the estimated

transit time, i.e.,

,z
Ctransit time _

AT (12.4-6)
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where AT is the error in the transit time. If p is the

fractional error in transit time correction, then

AT m p ('12.4-7)

where

R is range

C is speed of light

12.4.2 Tracking Station Location Errors

In the preceding sections measurement equations have

been developed for a relative satellite-station geometry.

These measurcments are used to determine satellite position

and motion in an inertial coordinate system at some epoch

time. In transforming from the relative coo:dinate system

at the time of measurement to the .inertial system at epoch

we must account for both the movement of the satellite and

the movement of the station in inertial coordinates during

the time period between measurement and epoch. The equations

of motion for the satellite are given in Chaptt_r b. b

The station movement is due to the movement of the Earth

{considered as a solid body) and to the movement of the

Earth's crust relative to the central mass. Station co-

ordinates are referenced to a particular epoch time (usually

1900.0) and the movement of the station since this time
• "._

ls included in the computation of a station-satellite

measurement. The solid body component of station motion

is due to the Earth's rotation, nutation and precession.

These are very well kno_m and make negligible contributions

to station location error.

12.4-3



The remaining components are due to uncertainties in the

movement of the Earth's crust relative.to the central mass.

These are:

A_SE = error due to solid Earth tidal displuccmcnts.

This is relatively a local error.

error due to ocean loading displacement. This

is also a relatively local error which depends

upon the distance of the station from the

shoreline.

error due to polar motion

12.4.3 Errors Due to Atmospheric and Ionized Particle Effects

Uncertainties in range and range-rate due to

the following transmission medium effects are treated.

Tropospheric refraction

•Ionospheric refraction

Space plasma

Except at very low elevation angles, (<S °), the primary

effect of the troposphere is a decrease in thc velocity of

propagation. At the Earth's surface, this decrcasc is about

300 parts per million, decreasing to about I part per million

at a hcight of 30 kin. Considering the Earth's atn_ospherc to

be horizontally stratified, as is almost always donc in data

reduction, a good approximation to the integratcd tropospheric

e£fect on range measurements is

2.77(NsI32S.S)

_R T = mc_ers (t2.4-8)
.026 + sin E -
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The effect of an error in station locazion on the com-

puted measurement can be determined by the following expression

_Z c

ZCSTA = __ • A_ST A
_r

(12.4-9)

where

AZcsT A
is the error in the computed measurcment dee to

an error in station position

T is the satellite position vector

ArST A is the error in station position (in same

coordinate system as 7)

This is obvious if onc considers, for example, a range

measurement from a station to a satellite. If the station

height werc raiscd, thc same effect on the mensurcmcnt

would occur if the satcllite hcight were lowered.

At any measurement time the total station location

error can be expressed as

(12.4-10)

where the components are defined as

A? S = survey error. This is the error in a station's

locstion relative to the local datum. Each

station on the same local datum will have a

different value of A_ s.

A_ E = station location error due to uncertainty in

location of the local datum with rcspect to

the center of mass of the Earth. All stations

on the same local datum will have the same A? E.
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where

ROBS_RVED = RCOMPUTED + ART,

N s is the deviation of surface index of refraction

£ro:a unity in parts per mil!ion, and

E is _he clcvation angle.

The most serious error in applying this correction

to data is due to errors in the surface index of refraction

at the tracking site. For this reason, tropospheric refrac-

tion errors arc modeled as

_ (ART) (2.771328.5)
= (12.4-11)

_N s .026 ÷ sin E

The systematic effect of tropospheric refraction on

range rate errors is obtained by diffcrentiating the range

error with respect to time,

_(A T) (-2.771328.5) .
= cos E E

(.026 + sin E) z
_N s

(t2.4-t2)

Elevation:

For elevation observations, the partlal with respect

to refraction is

_E I0 _
(tz.4-t3)

_-W 16.44+930 tan E
fi

Azimuth is not affected by refraction.
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Direction Cosines:

_£ = -sin A z sin E _E
_-_ _ (12.4-14)

S S

_--m-_= -cos A sin E' _._EE
_m s z _m s ( [2.4-I:0

X and Y angles:

_X sin A z _E
= (L2.4-16)

_"ns (sin _ E + sin 2 A £o.';' E) _'ns
Z

_y cos A z sin E _]_

The effect of the ionosphere on a range measurement

is evaluated by considering

ROBSERVED = RCOMPUTED + AR I (t2.4-t8)

The correction AR I is modeled by fitting a polynomial to

curves taken from JPL SPS 37-41,Volume III, page 8.

The polynomial takes the form

AR I - C O + C 1 SIN E + C2 SIN2F- + C3 SIN3E (t2.4-t9)

where E is the elevation _ngle and the C i are obtained by a

least squarcs fit to selected points from the curves. Errors

in range rate arc obtained by differentiati.g AR I.

An estimate of the error in AR I is given by the above

reference to bc 10_ on a day-to-_tay basis for a particular

location.
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Space plasma represents another type of propagation

error. Unlike the ionosphere, which is assumed to terminate

somewhere near 600 KN above the Earth's surface, space plasma

continues ad-infinitum, and is reasonably represented by

a I/r 2 law. Therefore, no closed-£orm solution exists for

its effect on measurements, andan integration process must

be performed. Let

• ROBS_RVE D = RCOMPUTE D + hRsp (t2.4-2o)

where ARsp is modeled by the relationship

and

44.3 f
ARsp = f-_T- Np ds

(12.4-21)

f = frequency of wave (Hz)

Np
= proton density per cubic centimeter

s = ray path

The proton dcnsity is taken to be a 4 th degree polynomial

Np = K 0 + KIR + K2 R2 + KsR3 + K4R4 (t2.4-22)

as a £unction of the distance _rom thc sun.
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13. MANEIP!ERERRORANALYSIS

13.1 Introduction

The a_lalysis of the errors associated with spacecraft maneuvers

is a very important part of GMAS. General error models are defined for

attitude determination and control errors (pointing) and engine char-

acteristics (proportionality, resolution and timing) for both impulsive

and finite burn models of spacecraft orbit change maneuvers. The

purpose of the analysis is to assess the errors which may result after

performing _J burn maneuver and the impact that these errors may have

upon the mission success.

In the Monte Carlo mode of analysis, the various error sources

are sampled to generate actual states which are then propagated through

the mission, statistics are then collected upon various mission param-

eters of interest in the analysis. In the linear mode of analysis,

actual trajectories are not analyzed, but rather the ensemble of pos-

sible cases as described by the nominal trajectory and covarlances of

state errors and covariances of the various error sources. All error

sources are assumed to have gaussian distributions. In the linear

analysis state covariances are propagated by the use of the state

transition matrixes.

In many cases where it is necessary to model the maneuver as a

finite burn, the burn is short enough that a simplified model for the

state and state transition matrix propagation over the burn arc is

sufficient. The equations for this model are also given in this

section.

13. l-I



13.2 Impulsive Maneuver Error Modeling

The execution errors resulting from performing a velocity change

maneuver _V, are based upon an execution error model defined by four

independent error sources. The first two error sources are in the

direction of the 3V but affect its magnitude. The proportionality

error is determined by the proportionality factor k. The resolution

error s is also in the direction of _V but is independent of its mog-

nitude and corresponds to a thrust tailoff error from the engines. The

error in the direction of _V is thus given by

_av k a_ + S a_.IV ( 13 2-1)

where AV has been written for I_VI.

The pointing error is formulated as two independent errors along

mutually orthegonal axes which are both orthogonal to the maneuver

impulse direction. For purposes of unique specification let one point-

ing error angle 8, be measured in the xy plane of the coordinate sys-

tem in which AV is expressed, then the error due to 8, (which is

presumed to be a small angle) is given by

eo =_V8 a [ AVy _ . _V___x_]u u (13.2-2_

where the x and y subscripts refer to those components of _V, _, _,

are the unit vectors in the xyz system in which _V is expressed, and

the ;_uxillary variable u is defined by

u = (4Vx 2 + 6Vy2) % (13.2-3)

The second pointing angle _

to both 8a and AV. Presuming 8_

velocity error corresponding to it is

_V x. _V z _Vy6Vz A
E_ U U-

is in the direction orthogonal

to also be a small angle the

(13.2-4)
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Combining equations(13.2-1) ,(13.2-2) and( 13.2-4) ,the complete descrip-

tion of the execution error vector e Is written as

dVAV 8_ + _Vx_V z8B

aV _V 8. - AV AV 8B ]

x y z j A
u J

+ k + )_V - u88 k
Z

(13.z-5)

The four error sources are generally taken to be independent, zero mean,

gaussian distributed variables. A more general error model might presume

correlated, non-zero mean, or non-gausslan distributed variables, but tile

above model is generally quite sufficient. Since the four error sources

are independent, equation(13.2-5)Is suitable for use in Monte Carlo anal-

ysis directly, with actual values of k, s, 8a _ and 28_ being2 sampled2

from zero-mean distributions with variances ek ' _s ' Qa and _fl

respectively.

For the purposes of linear error analysis, the execution error

covariance matrix Q = _{_T 1 is necessary. The components of Q are

given below, presuming the assumptions made above.

2 2 _Vx2aV z 2

rex2(%2+ _v2)+ _ :a
%2 AV2AVy .

= -- 2 + 2
QII u u

(13.2-b)

y[,2 2]QI2 = Q21 = AVx 8V -k2+-- - _ + u2
AV 2 u

(13.2-7)

QI3 = Q31 = AVxAVz [°k 2+ o's22]bv--_ - ¢/_
(13.2-8)
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"s2 AV2aVx 2 ,2 AVy2_Vz 2 _02

Q22 = _Vy 2 (_k2+ _ + '_V 2)+ _ u 2
( 13.2-9)

"s2 _]Q23 = Q32 = AVy AV z Uk2 + -- - _
AV 2

(_3.2-io)

9

• 2 2 22Q33 " AV ( ak + --) + u _ (13.3-11)

The state c,warlance after a 6V maneuver is performed is then given by

[ ]0 , 0

p+= p-+ -
l

( 13.2-12)

where the + and -- superscripts denote after and before the maneuver

respectively.

Equations(13.2-1) throu_h(13.2-11)are taken primarily from

Reference 13.1. They are essentially equivalent to the corresponding

equations of References 13.2 and 13.3 with a few minor exceptions.

Reference 13.2 does not develop the covariance Q, using only the Monte

Carlo form in which the resolution error is modeled as a uniform distri-

bution rather than gaussian. Both References 13.2 and 13.3 determine the

direction of the erroneous AV as the nominal _V plus pointing errors

only. The proportionality and resolution errors are then added to the

nominal magnitude which is then _sed along the direction which includes

the pointing errors. For small execution errors the difference between

the formulaticn given above and that of References 13.2 and 13.3 will

only be of second order and is hence generally quite negligible.
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13.3 Finite Burn Maneuver Error Modeling

The execution errors resulting from performing a velocity change

maneuver which takes an appreciable time span are based upon four inde-

pendent error sources as is the case for impulsive maneuvers. For

burn with a fixed thrust level and direction, the error sources which

are in the direction of the thrust are the thrust magnitude error and

an error in the duration of the burn. As in the impulsive case, two

independent pointing errors are modeled.

As was the case for an impulsive burn, either an erroneous state

(Monte Carlo application) or a covariance describing the ensemble of

erroneous states (linear analysis application) is rlecessary at the

completion of the burn. For the Monte Carlo application, actual val-

ues of the errors in thrust (ST), pointing ( 8,,8_ ) and timing

( 8 tB) are sampled from zero-mean gaussian distributions with vari-
2 2 2 2

ances eT ' _ ' _3 and e t respectively. A slightly more compli-

cated error model could reVlace the single timing error 8t B by errors

in the time of burn initiation and the time of burn termination. Once

the sampled errors are added to the nominal thrust parameter values.

then these erroneous thrust parameters are used by the propagation

model which has been specified - whether high precision numerical

integration or an approximate scheme - to generate the sampled state

vector after the burn as a function of the initial state which may

also have included sampled errors.

For the linear error analysis application the situation is some-

what more complex. The state errors at burn completion will arise from

two sources, namely the state dispersions at the start of the burn,

which must be propagated through the burn, and the actual execution

errors related to the burn itself. The effects of both of these error

sources are found by the use of the state transition aatrices ,h and _.

The first of these is the 6x6 state to state transition matrix, relating

deviations in _he final state to deviations in :the initial state. The

second is the 6x4 control to state state transitioc matrix relating

deviations in the final state to deviations in the thrust control

parameters. For the finite burn model considered here, the four
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control parameters are the thrust magnitude (T), the two angles specify-

ing the inertial direction of the burn and the duration of the burn (tB).

The two state transition matrices may be calculated by high precision

numerical integration or some approximate scheme, but in either case the

column of O corresponding to t B is simply

T

a__ x= [0,o, Ax, Ay,^z] (13.3-i)
_t B

where X is the state vector and Ax, A Y

thrust acceleration given by

and A
z

are the components of the

(T/m) cosa cos_l

A -- (T/m) sin- cos_J (13.3-2)sin

where m is the spacecraft mass. The covariance of state errors after

the burn (P+) is given by

p+ = _p-_T + OUO T < 13.3-3)

where P" is the state covariance at the burn initiation and U is the

2 2 2
diagonal covariance of control errors with elements

2 T ' _a , _

and • giving the statistics of the finite burn errors. The above
t

equations are taken primarily from Reference 13.4.

For some approximate analyses, it is useful to assume thet the

burn is short enough so that the state is sufficiently approximated by

linear motion. In this case the state at the conclusion of the burn

is given by

2RO 3 . \ mo 1
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- " RO _ tB T /m +mtB\

o

where R and m are the position vector and mass before the burn, m
o o

is the mass flow rate, _ is the position vector after the burn, _

is the gravitational parameter, tB is the burn time, T is the thrust

vector, and R° and RF are the magnitudes of Ro and _. The state

transition matrix _ is given by

tB2 I 3 -- (13.3-6)
_i ffiz 3

2R ° Ro 2

_2 = tBI (13.3-7)

I Eo_oT]
¢3 = - _t---_BZ - 3

Ro 3 Ro 2 ]

(13.3-8)

_4 ffi I (13.3-9)

where _ has been partitioned as

(13.3-i0)

The first three columns of the state transition matrix O can be expressed

as

(13.3-11)
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where

_(T, _,fl) sina cos_ T cos,_ cosB -T sin_ sin

sin _ 0 T cos /_

( 13.3-12)

and where

and

, (13.3-13)

-" ( m°+_tB )_ = -_ In - I
m mt B

(13.3-14)

The fcurth column of O is as given in equation(13.3-1), so that now

with _ and {} equation(13.3-3) may be used to calculate the covarlance

at the end of the burn. Equatlons(13.3-4) through(13, 3-14) are based

primarily upon References 13.5 and 13.6.
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14. LINEAR AND MONTE CARLO ANALYSIS

14.1 Introduction

One of the tasks to be performed by GMA5 is the analysis of

the effect of errors upon various missions. Errors or uncertainties

arise from many sources. Chapter 12 discussed the modeling of

measurement errors involved in the spacecraft tracking process.

Random noise and fixed biases can occur in various quantities which

are measured by ground- or spacecraft-based instruments as well as

in dynamical quantities such as the mass of the earth, gravitational

harmonics, spacecraft drag, reflectivity and engine characteristics,

ephemeris errors, etc. Uncertainty can also arise from modeling all

of the effects involved in an analysis in too simple a manner. All

of these sources of uncertainty must be assessed in pre-mission

planning to be able to predict mission feasibility and to assist in

both mission and spacecraft design. During a mission, also, the

effect of current and expected uncertainties must be assessed for

the impact upon the continued success of the mission.

Error analysis can be addressed from two points of view. The

first point of view assumes that all errors and uncertainties are

"small". When this is the case all equations of meEion, measurement

equations, any mathematical representation of the dynamics under

consideration, can be linearized about the nominal or best estimate

of the values of all of the parameters. This allows a much more

tractable mathematical representation. The second point of view

makes no assumption about the size or effect of any error source,

the only assumptions made are that all important effects are prop-

erly modeled and that the uncertainties in all parameters are

described by gaussian distributions which may be cozrelated with

one another. Monte Carlo analysis can be performed by statistically

sampling from the various parameter distributions to obtain simulated

actual values for the pgrameters. These actual ca_es:may then be

used in the full non-llnear form of the model to obtain distributions

of the resulting parameters of interest. The Monte Carlo analysis

14.1-i



although generally more realistic, is of course far more costly

in terms of computation tlme due to the large number of samples

required for reasonable statistics to be obtained.

Thls chapter will also cover error sensitivities, error

budget analysis and the linear propagation of errors, as well as

Monte Carlo techniques. The sensitivity of an estimated state to

the parameters which are known to be uncertain but are not esti-

mated (con_:ider parameters) is frequently of great interest in

mission analysis. These sensitivities, like covariances, can be

calculated for error analysis purposes without actual data being

necessary. Error budgets allow the Identlflcation of the effects

of various error sources as they contribute to the total uncer-

tainty. Monte Carlo methods are frequently a necessary technique,

but must be used with great care due to the high cost involved

and the possibilities for misinterpretation of the statistics

involved.
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14.2 Linear Error Analysis

14.2.1 Error Sensitivities

In Chapter 12, the expressions in equations 12.2-6,12.2-7,and

12.2-12 were given for the batch weighted least squares estimator and

covariance equations in the presence of consider parameters. Within

the restrictions of linearity, the estimator equation 12.2-6 prescribes

the computations necessary to obtain the "best" estimate of the solve-

for parameters. By calculating the derivative of a_, the correction to

be applied to the initial estimate, with respect to the vector of consider

parameters, it is possible to obtain the sensitivity of the estimate to

the consider parameters.

This is given by

ad_ = . _ FTwE (14.2-1)
_z

Where _ is the inverse of the normal matrix as defined by equation (t2.2-I0)

and F and E are the observation matrices for the solve-for and consider

parameters respectively. Subsrituting this into equatlon(12.2-7) leads

to the expression for the covariance in terms of the sensitivity matrix

" tax _z Pax 0 - 0P_x CAx 5z\Oz / (14.2-2)
O O O O

The first term in equation(14.2-2)is due to measurement noise and the

_a _ covariance. The second term is easily identifiable as the

contribution due to the consider parameters. The last two terms occur

only if there is an initial correlation between the solve-for and consider

parameters. The sensitivity equation is useful f_r assessing the dependence

of the estimate upon assumed values of the consider parameters.
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14.2.2 Covariance Propagation

The linearized dynamic model which relates errors on deviations

in the state at one time to those at another has the form

AXk = _k,k-iAXk-i + _k,k-I AZk-I + qk,k-I

Where the state to state and consider parameter t0 state state transition

matrices are given by _and _ over the time interval (tk_l, tk). _he

effect of dynamic process noise over the interval is given by qk'k=l and

the vectors of solve-for and consider parameters are given by x and z re-

spectively. The corresponding equations for the propagation of the

covariances discussed in Chapter 12 are given by

PAxk = _ P_k.l •
T + ,_C T _T

Ax_'k. I

T

+ __C,xazk. 1 e + OPAz 8¥ + Qk,k-I (14.3-4)
o

and

= + OPaz
CAx-xz'k-I _CAXAZk-i o

(t4.2-5)

where the subscript k, k-I is presumed on all of the state transition

matrices. The qcantity Qk,k-I is the contribution due to dynamic process noise.

14.2.3 Error Budget Analysis

In standard error analyses the normal result of performing the

error analysis of a set of measurements is the covariance matrix P which

describes the effect of all error sources which were assumed for the

analysis. The individual contributions of the various error sources to P

are thus not identifiable. To be able to identify the contributions of

the error sources to P it would normally be necessary to make repeated

analyses each with a specific error source turned on. A formulation which

at each step of a sequential analysis gives the contribution due to each

error source is therefore highly desirable.
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The equations for an error budget analysis, wherein the components

of the total error budget can be propagated in a single set of calculations

are given below. The covariance PN' based upon all measurements up to and

including the Nth, is given by

PN " Sx(S)FI_o_oZl sTx(s)+ sz(S)_{_,_TIS._T.(N)

÷s T} + P (N) + P (N) (14.2-6)
u S

where as before x refers to the solve-for parameters. The consider para-

meters which were previously denoted by z have teen broken into two classes

- dynamical consider parameters z and the measurement consider parameters m.

The sensitivity matrices S (N), Sz(N) and S (N) relate the various errorx m

sources to the current state estimate. The P (N) and P (N) matrices are
u

the contribution to the state uncertainty due to state process noise and

measurement noise respectively. The quantities lx , Az and Am are the
" O

initial solve-for and consider parameter errors given by

-_ o = x (o) - _ (o)
(14.2-7)

._ = z - z (14.2-8)

A_ = m - m (14.2-9)

The initial solve-for and consider parameter second moment matrices are

given by

O O

where the possibility for an initial mismatch or non-zero mean for the

parameters has been allowed for. The subscript A indicates the mean of

the actual distribution and the --P_x' __P_zand PAre are the initial
O

covarlnnces.

The proceedure of the error_udget analysis is to use rectrcsive

relations for the matrices Sx, Szp S , P and P instead of the covariancem u 8
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matrix P. The relations are given by

(N) =[I- KNFN]_ N Sx(N-I )Sx , N-I
(14.2-13)

Sm(N ) = [I - KNF N _N _N.I L(N-I) - K EN%

ru(")= [X - KNF

Ps(N) = [I " KNFN]

(14.2 -14)NEz
N

(14.2-15)

][ ]_N, N-I Pu(N'I)_TN, N-I + QN, N-I I - %F N T

([4.Z-lb)

#N, N-I Ps(N'I)#N, N- " %FN +
(14.2-17)

The initial values are given by

S (0) = Z
x

( L4. Z-L8)

s (o) = s (o) = P (o) = P (o) - 0
Z m u s

(14.2-19)

The state to state and dynamic parameter to state state transition

matrices _ and _ are over the interval (tN. I, tN) as indicated, the

dynamic process noise and measurement noise are given by QN,N-I and RN

respectively. The observation matrices FN, EzN and EmN are the same as

defined in Chapter 12, except that the consider parameter matrix has been

partitioned into dynamic (z) and measurement (m) parameters.

It has been tacitly assumed in the above equations that no correlation

between the dynamic and measurement consider parameters exists, if there

is it can always be removed by defining a new set of dynamic parameters

by

zs = z - C_z_m m (L4.2-20)

and then zI is treated Just as z was.
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In general, even though there may be no initial correlation be-

tween the solve-for and consider parameters, a correlation will result

from measurement processing. The equations for these correlations

are given by

caxaz s (N)

and

(i4.2-21)

The theoretical development behind the equations given above for the error

budget analysis is contained in Reference 14.1.

The generalized covariance technique described in Reference 14.2

is speclfically concerned with filter sensitivity to differences between

the assumed (by filter) and actual models of the world. Either the

standard formulation of error analysis equations as summarized in Chapter 12,

or the formulation given above in the error budget analysis may be used,

noting that the consider parameters z and m are further subdivided into

parameters which are not estimated but affect the computation of the gain

matrix (consider), and parameters which are neither estimated nor affect

the gain matrix (ignore). Essentially then, the generalized covariance

technique generates sequentially both actual and assumed statistics.

The differences between assumed and actual error statistics can involve

differences in means, standard deviations, and correlation coefficients.

Actual error statistics are also defined for the ignQre parameters whose

uncertainty has not influenced the filter design.
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14.3 Monte Carlo Techniques

The GMASMonte Carlo capability will be used primarily to sup _

plement the linear error analysis. Monte Carlo analysis may be used

to test lin_,arity assumptions and to analyze the cumulative effect

upon dispersions in mission parameters due to a sequence of maneuvers

each affecting the next. Each particular Monte Carlo sample will be

run exactly as a deterministic case, with the uncertain parameters

being sampled as described below to generate the particular case, and

the statistics of the parameters of interest being accumulated.

The standard method of sampling from the distribution described

by the nominal vector of parameters _ and associated covariance

P = F I (x-x) (x-_)T I requires the computation of the eigenva[ues

and associated eigenvectors of the matrix P. The matrix S of the

eigenvectors is the orthogonal matrix which diagonalizes P giving

the diagonal matrix D, defined by

D = sTps

whose diagonal elements are the eigenvalues of P.

A

samples from the distribution defined by x and P

first defining a vector, _ , of k normally distributed random

numbers, where k is the dimension of x. The components of _ are

given by

(14.3-1)

The Monte Carlo

_re generated by

_j• = din (O,l) (14.3-2)

where d. is the j-th diagonal element of
J

number from a gusslan distribution of mean

Monte Carlo samples are given by !

D and n (0,I) is a random

0 and variance I. The

x = x + sg (14.3-3)

An alternative scheme for sampling a distribution which may be

computationally faster when l:he eigenv_lues and eigenvectors of P

have not been calculated for_other purposes, is given in Reference 14.3.

The matrix P is factored into the product given by
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p = RTR (14.3-4)

where the square root matrix R is an upper-triangular matrix. The

Monte Carlo samples are then simply given by

x = _ + R T r(0,1) (14.3-5)

where

numbers n(O,l). The elements of the matrix

recurslve relations

i-I-- lj
j=l

r(O,l) is a k-dimensional vector of (independent) random

R are given by the

, i=l, .... k (14.3-0)

0 , j<J

i-1 (14.3-7)

I (Pji" E RjmRim) ' j=i+l ..... k
Rii

m=l

Whenever random numbers are obtained for the purpose of

generating Monte Carlo samples, the covariances which are sampled

should always be reconstructed from the actual samples which are

generated. This is so that comparison between the covariance and

its refonstructed equivalent can be made to assure that at least no

gross mistakes have been made. It may be desirable to apply more

or less sophisticated techniques of confidence level verification

and testing to the reconstructed covarlances as well as the distrib-

utions of the mission parameters for which the Monte Carlo analysis

is being performed.

For certain mission analysis situations, it may be desirable

to perform a combined linear-Monte Carlo analysis. ]hat is, lineor

methods of covariance propagation and modification may be applied

to certain parts of the analysis where it is known that the linearity

assumption is perfectly valid. Other parts of the analysis, where

linearity does not hold, may be treated with Monte Carlo methods.
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In situations such as assessing a series of mldcourse maneuvers,

the error sources may be sampled directly without having to sample

from a covariance. This will be possible only when the various error

sources are independent of one another.
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